VACUUM ARC ION SOURCES

(or "MEVVA" ION SOURCES)

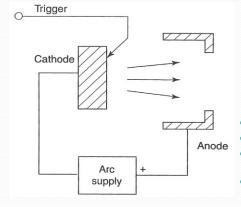
lan Brown
Lawrence Berkeley National Laboratory

CAS June 2012

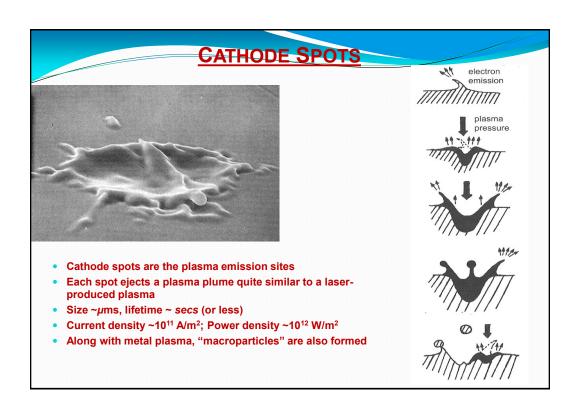
OUTLINE

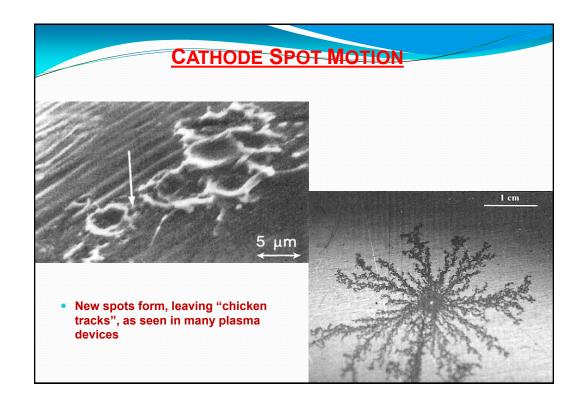
- Background
- The Basics
- Embodiments
- Characteristics / Parameters
- Applications
- Summary

SUITABILITY OF THE VACUUM ARC PLASMA FOR


<u>A</u>

HIGH CURRENT METAL ION SOURCE


The plasma formed by a vacuum arc discharge is

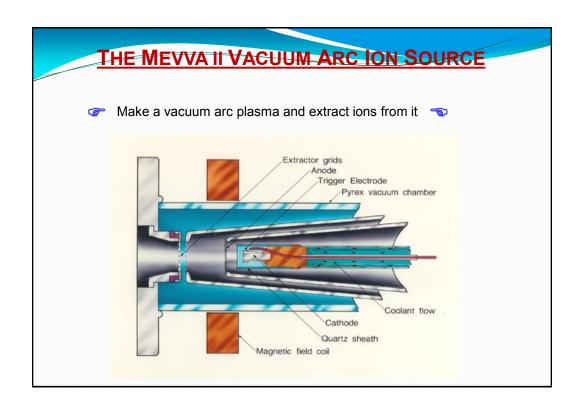

- Pure (no, or low, gas content)
- Dense
- OK for a wide range of metal species
- Simple no tricky parts
- Simple electrical system
- Efficient Iion / Iarc is high

THE BASIC VACUUM ARC

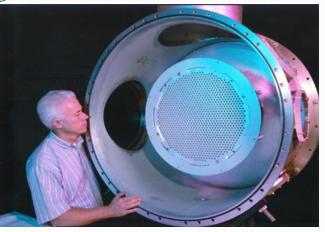
- Extreme simplicity
- Also called "cathodic arc"
- Plasma is born at the cathode and streams toward the anode
- On the cathode, the plasma emission sites are tiny "cathode spots"
- Metal plasma jets away from the spots in a manner very similar to a laserproduced plasma

HISTORY

- 1940s U.S. Manhattan Project
 - · For isotope separation. Some basic studies, but work was abandoned
- 1950s & '60s USSR (Plutto et al).
 - . Demonstration of ion extraction from the vacuum arc plasma
- 1970s Sandia, LANL, U.K., USSR
 - · For various applications, but work was not pursued.
- 1980s Berkeley (LBNL) and Tomsk (HCEI)
 - More-or-less parallel & simultaneous development at both places.
 - · Large sources developed and demonstrated for accelerator injection and ion implantation.
 - Ongoing programs established, including many collaborative projects.

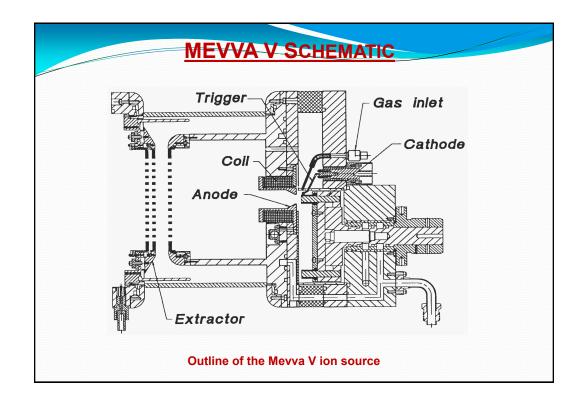

THE VACUUM ARC ION SOURCE IN ESSENCE

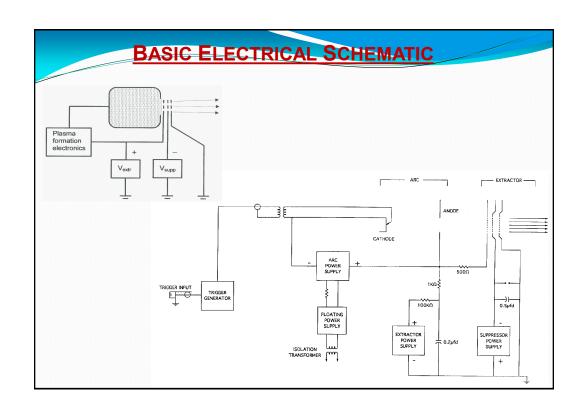
- Metal plasma is formed by a vacuum arc plasma discharge
 - Very efficient: $I_{\text{ion}} \sim (0.05 0.1) I_{\text{arc}}$
- Energetic ion beam is "extracted" by beam formation electrodes
- The ion beam is typically
 - Metal ions (almost all in the Periodic Table)
 - Extraction energy typically 20 150 keV
 - Beam current typically 10 mA 1 A

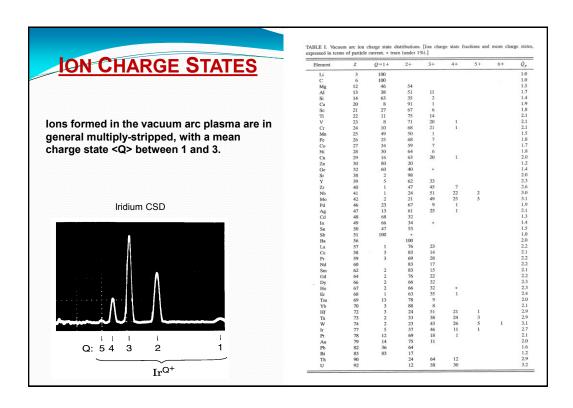

An ion beam generator for high current beams of metal ions

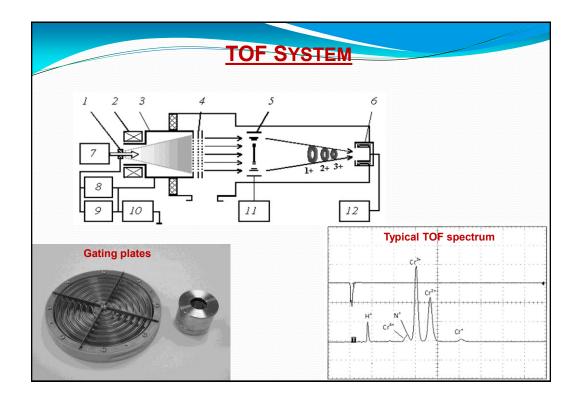
BIG & SMALL MEVVA EMBODIMENTS

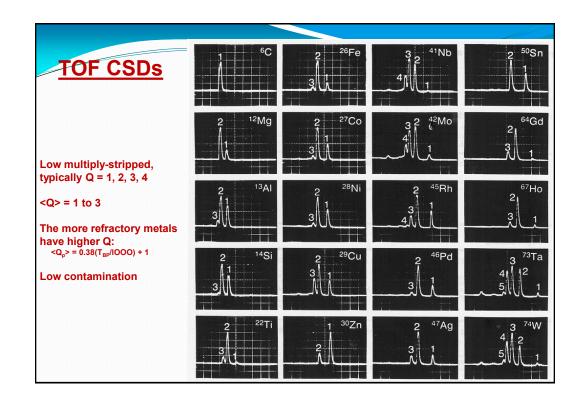
50 cm diameter extractor: 100 keV Ti ion beam with current up to ~20 A

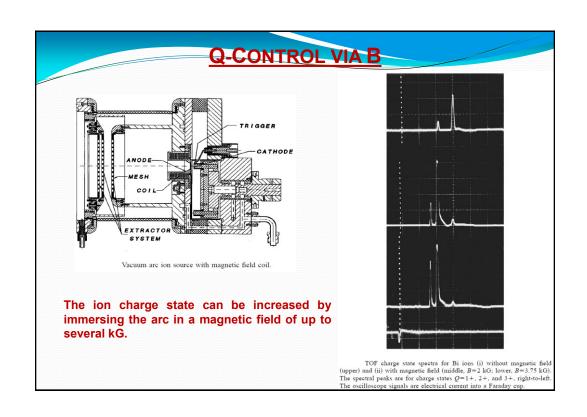

About "thumb sized": Short pulse, low rep rate



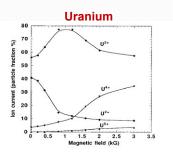

MEVVA II, MEVVA IV, MINIMEVVA

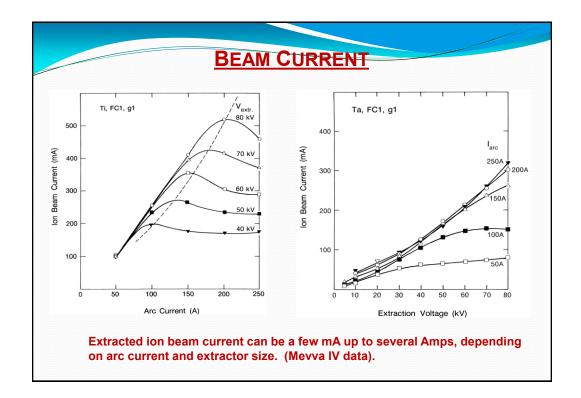


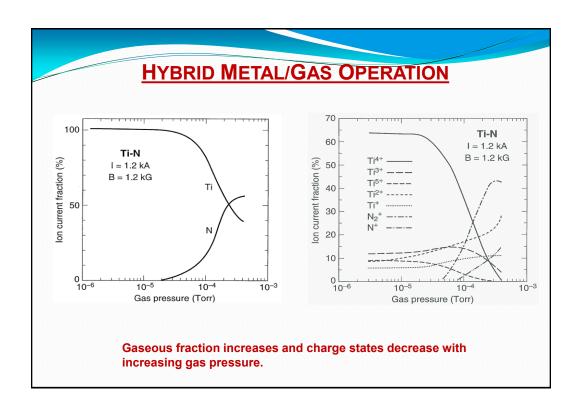


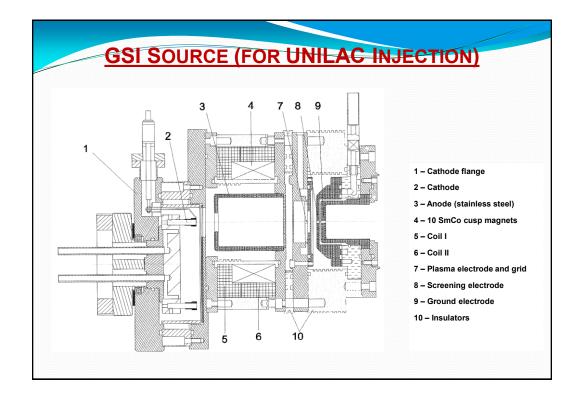


TIME-OF-FLIGHT Q/A ANALYSIS SYSTEM A relatively simple way of obtaining a Q/A spectrum of an ion beam: Gate a (sub-)microsecond piece of the beam, Monitor the beam components, separated according to their flight times, Analyze according to $\frac{1}{2}$ and $\frac{1}{2}$ are according

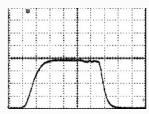



B-ENHANCED CHARGE STATES

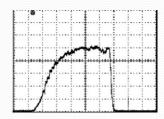

Charge state distributions and mean charge states (all in particle current fractions) for a range of metal ion species with and without magnetic field applied. $I_{\rm acc}$ =220 A, $B_{\rm max}$ =3.75 kG.


Metal	Without magnetic field						With magnetic field							
	1+	2+	3+	4+	5+	\bar{Q}_1	1+	2+	3+	4+	5+	6+	\bar{Q}_2	\bar{Q}_2/\bar{Q}_1
С	96	4				1.0	60	40					1.4	1.40
Mg	51	49				1.5	5	95					1.9	1.27
Al	38	51	11			1.7	10	40	50				2.4	1.40
Sc	23	66	11			1.9	16	23	59	2			2.5	1.31
Ti	11	76	12	1		2.0	5	35	54	6			2.6	1.30
V	11	72	15	2		2.1	13	31	48	8			2.5	1.20
Cr	14	70	15	1		2.0	11	26	55	8			2.6	1.30
Mn	48	52				1.5	26	47	25	2			2.0	1.33
Fe	28	68	6			1.8	7	58	35				2.3	1.28
Ni	43	50	7			1.6	19	62	18	1			2.0	1.25
Co	34	59	7			1.8	9	56	31	4			2.3	1.27
Cu	28	53	18	1		1.9	8	41	47	3	1		2.5	1.32
Y	7	63	29	1		2.2	6	9	77	8			2.9	1.32
Nb	3	40	39	16	2	2.7	1	9	23	52	13	2	3.7	1.37
Mo	7	30	40	20	3	2.8	5	11	26	48	10		3.5	1.25
Ba	3	97				2.0	2	41	53	3	1		2.6	1.30
La	4	65	31			2.3	3	16	61	20			3.0	1.30
Gd	8	81	11			2.0	1	43	41	15			2.7	1.35
Er	8	62	30			2.2	2	12	70	16			3.0	1.36
Hf	7	26	48	18	1	2.8	5	16	31	32	15	1	3.4	1.21
Ta	1	17	39	39	4	3.3	1	5	13	40	41	2	4.2	1.27
W	1	17	35	35	12	3.4	1	5	16	39	32	7	4.2	1.20
Pt	12	70	18			2.1	3	25	64	8			2.8	1.30
Pb	40	60				1.6	1	75	24				2.2	1.37
Bi	89	11				1.1	9	60	31				2.2	2.00

Ion beam current fractions as a function of magnetic field strengt for the different ionization states of a uranium ion beam; $I_{\rm arc}{=}280$ A.

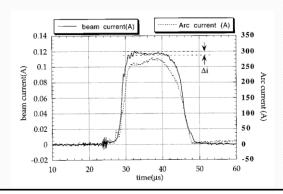


GSI VACUUM ARC SOURCE

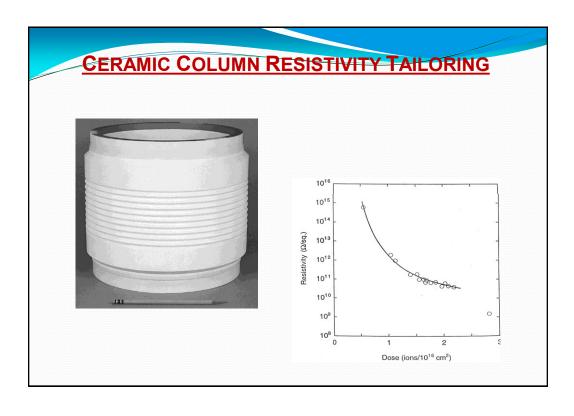


U4+ INJECTION AT GSI

- > U⁴⁺ at 2.2 keV/amu matches the required RFQ injection velocity
- ➤ Beam is extracted at ~30 kV, followed by ~100 kV post-acceleration
- Beam parameters:
 - > 25 mA U⁴⁺ at ~525 keV, measured at RFQ entrance
 - > 56% of the extracted Mevva U beam is in U4+ charge state
 - ▶ U⁴⁺ beam noise is up to but not greater than ~10%
 - > Pulse-to-pulse repeatability is good


 $I_{\rm ion}$, total beam (all charge states) 40 mA/cm, 100 µs/cm 30 cm from ion source


*I*_{ion}, U⁴⁺ only (post-analysis) 5mA/cm, 100 µs/cm 12 m from ion source


AS AN HIF ION SOURCE

As an example / demonstration of potential HIF application: Gd beam (85% in the $\mathrm{Gd^{2^+}}$ charge state), at an ion energy of 120 keV (60 kV extraction voltage), with a collected beam current of 120 emA, for a 20 μ s pulse width, a pulse rise time of < 1 μ s, and a beam emittance about 0.3π mm. mrad (normalized).

CONCLUSION

- The vacuum arc ion source (Mevva) is unique in its
 - High current
 - of <u>metal ions</u>
 - > It is essentially a repetitively-pulsed source
 - Beam noise and pulse shape irreproducibility have been greatly improved, and the source is suitable for accelerator injection
 - Main demonstration of accelerator injection application is provided by GSI Darmstadt
 - > Other applications include metal ion implantation

BIBLIOGRAPHY

- The paper in this meeting's Proceedings
- Chapters in "The Physics and Technology of Ion Sources", Ian Brown, Ed.,
 - 1st edition, Wiley, 1989
 - 2nd edition, Wiley-VCH, 2004
- "Vacuum arc ion sources: Recent developments and applications", lan Brown and Efim Oks, IEEE Trans. Plasma Sci. 33(6), 1931-1943 (2005).
- "Vacuum Arc Ion Sources A Brief Historical Review", I.G. Brown and E.M. Oks, IEEE Trans. Plasma Sci. <u>25</u>, 1222-1228 (1997).
- ICIS Proceedings (Proc. Intern. Conf. Ion Sources), Special Issue of Rev. Sci. Instrum., in even-numbered-years, usually about Feb – Mar. (see also these proceedings for the latest on all ion sources).
- · And all the references there-in