

CERN		Outline	The CURN Accelerator Solo			
	1.	ng:				
	2. 3.	a. Mome (turbo a. Conductance and pumping speed. b. Evaluation of pressure profiles. c. Transient behaviour. Electrical analogy 6. Conclusions	entum transfer pumps pmolecular) er ion pumps r pumps umps arison of pumps s			
	4.	Outgassing				
Annendix						
1. Basic Notions						
2. Additional Examples of Electrical Analogy						
3. Extra Info about Outgassing						
	5. Extra Info about Sputter Ion Pumps					
		6. Regeneration of NEG Pumps				
		7. Extra Info about Cryopumps.				
June 5t	h, 20	2012 Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources	2			

Basic Notions (see appendix 1)					
• Ideal gas equation: $P V = n R T \text{ (thermodynamic)}$ $P V = N k_B \text{T (statistical mechanics)}$					
• Maxwell-Boltzmann model: $\varphi = \frac{1}{4}n\langle v \rangle = \frac{1}{4}n\sqrt{\frac{8 k_B T}{\pi m}}$ m is the molecular mass [Kg] M is the molecular weight [Kg]					
• Knudsen number: $K_n = \frac{l}{D}$ l is the mean free path of gas molecules, D typical distance of the vacuum system					
• Molecular regime: $K_n > 1$ Collisions with the wall of the vacuum system more likely than those between molecules					
• Gas flow Q in molecular regime: $Q = C (P_1 - P_2)$ C is the gas conductance indipendent on pressure					
• Gas conductance of a wall slot: $C = \frac{1}{4}A\langle v \rangle = A C' \rightarrow \propto \frac{1}{\sqrt{M}}$ A is the wall slot area					
• Gas conductance of a duct: Conductance of the duct aperture (A C') x transmission probability (τ)					
June 5th, 2012 Paolo Chiggiato - CERN - Vacuum 5 Technology for Ion Sources 5					

ER V	Electrical analog	y the COR Accessed is
Vacuum element	Electrical elements	• The ground potential is equivalent
Conductance C	Conductance 1/R	to zero pressure.
Gas Flow Q	Current I	 Long tubes are subdivided in smaller units and considered as
Pressure P	Voltage V	single vacuum chambers
Volume V	Capacitance C •	(conductance + volume) in series.
Pump	Conductance to ground	and time dependent conductance and pumping speed.
Gas source	Current generator	 In this way pressure excursion into viscous regime can be evaluated
Constant pressure source	Voltage supply	
Vacuum chamber with conductance and volume		
June 5th, 2012	Paolo Chiggiato - CERN - Vac Technology for Ion Source	uum 14 es

Materials of which a vacuum system is ma	ade of are spontaneous source of gas.					
Two main categories of materials:						
Metals	Organics (Polymers)					
After state-of-art surface cleaning	 High solubility of gas in the bulk, in particular H₂O. 					
• If not heated in situ: mainly H_2O for the first months in vacuum, then also H_2 . $q_{H_2O} \approx \frac{3 \times 10^{-9}}{t[h]} \left[\frac{mbar l}{s cm^2} \right]$ The source of H_2O is recharged after each venting to air.	 In general, the outgassing process is dominated by H₂O release. In the initial phase of pumping: q_{H₂O} ∝ 1/√t Heavier gas molecules can be 					
• <u>If heated in situ (baked-out)</u> : mainly H ₂ . The outgassing rate can be	outgassed (remnant of polymerisation, fraction of polymeric chains)					
assumed as constant; it depends on the accumulated effect of the previous thermal treatments	The permeation of light molecules is not negligible, in particular He					

Energy [e1/malecule] 2_5 300 k 2_5 4.3 k He physisorphion 4×10^3 $\sim 10^{-13}$ $5 \cdot 10^{-3}$ He physisorphion 4×10^3 $\sim 10^{-12}$ $5 \cdot 10^{-3}$ He physisorphion 6.5×10^2 $\sim 10^{-12}$ 10^{-63}
He physisorphian 4×10^3 $\sim 10^{-13}$ $5 \cdot 10^{-9}$ H ₂ physisorphian 6.5×10^2 $\sim 10^{-12}$ 10^{-63} H ₂ physisorphian 6.5×10^2 $\sim 10^{-12}$ 10^{-63} Ar, CO, N ₂ , CO ₂ phicis, 0.15 $\sim 10^{-11}$ ∞
H ₂ physiscription 6.5×10^{-2} $\sim 10^{-12}$ 1.0^{-63} Arr, CO, N ₂ , CO ₂ phisis, 0,15 $\sim 10^{-11}$ ∞
Ar, CO, N2, CO2 phisis, 0, 5 ~ 10" 00
Hz chemiserption 0,87 100
CO chemisorphian an Ni 3,3 ~109(100y)
O chemisorphion on XV 6,5 > age of Universe

CERN	Momentum Transfer Pumps: Turbomolecular Pumps (TMP)
Advantage	s of TMP:
	. constant pumping speed in a large range of pressure
	2. no memory effect (the gas is definitively evacuated) nor gas selectivity
3	start working at relatively high pressure (as soon as molecular regime is attained)
Disadvanta	iges of TMP:
	. mechanical fragility
	risk of contamination from the backing pump
3	 need of venting anytime the pump is stopped to block backstreaming of contaminations→need of valve between TMP and vacuum vessel
4	I. intrinsic limitation in ultimate pressure of H ₂
Present tre	end:
:	 Use of dry pumps as backing pumps (but lower compression ratio than oil pumps)
	 Increase compression ratio by adding molecular drag stages below the set of TMP blades (very compact design)
:	 Remove all lubricated mechanical bearing by magnetic rotor suspension (higher cost).
June 5th, 201	2 Paolo Chiggiato - CERN - Vacuum 25 Technology for Ion Sources 25

CERN	Capture Pumps: NEG Pumps							
The activation elements with the second s	ne activation temperature of the 4 th group elements can be decreased by adding selected ements which increase oxygen diffusivity.							
NEG materia form pellets metallic ribb A typical allo	NEG materials are produced industrially by powder technology. Small grains are sintered to form pellets, discs or plates. The grains can also be pressed at room temperature on metallic ribbon. A typical alloy produced by SAES Getter is St707 :							
	Element Concentration [wt. %] Main role in the alloy							
	Zr	70	High O solubility limit.Chemical reactivity					
	V 24.6 - Increases O diffusivity, - Chemical reactivity		Increases O diffusivity,Chemical reactivity					
	Fe 5.4 - Reduces pyrophoricity							
Full pumpi	Full pumping speed is obtained after heating at 400°C for 45' or 300°C for 24h							
June 5th, 2012	e 5th, 2012 Paolo Chiggiato - CERN - Vacuum 36 Technology for Ion Sources							

CERN		Capture Pumps: Cryopumps	si al constante de la constant
´ '2.	Cryo der	osorption : is based on the attraction between molecules and substrate. The v Waals forces are much stronger than those between similar molecules:	/an
	a)	Gas molecules are pumped at pressure much lower than the saturated vapor pressure providing the adsorbed quantity is lower than one monolayer.	our
	a)	Porous materials are used to increase the specific surface area; for charcoal about 1000 m ² per gram are normally achieved.	
	b)	The important consequence is that significant quantities of $\rm H_2$ can be pump at 20 K and He at 4.3 K.	ed
	c)	Submonolayer quantities of all gases may be effectively cryosorbed at their boiling temperature; for example at 77 K all gases except He, $\rm H_2$ and Ne.	own
3.	Crya diffi poir tem seve lowe	btrapping is understood as the inclusion of a low boiling point gas which is cult to pump such as hydrogen, in the matrix of a gas having a higher boiling at and which can be pumped easily such as Ar, CH_4 or CO_2 . At the same perature the condensate mixture has a saturation vapor pressure which is by eral orders of magnitude lower than the pure condensate of the gas with the er boiling point.	,
June	e 5th, 20	012 Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources	40

	Advantages	Disadvantages
тмр	 No memory effects Constant pumping speed for pressures lower than 10⁻³ mbar Pumping speed independent of total gas load Starts working at high pressures (molecular regime) 	 Mechanical fragility Risk of contamination from the backing pump Need of venting anytime the pump is stopped Need of valve on the main flange Intrinsic limitation in ultimate pressure of H₂
SIP	 Clean pumping No maintenance No vibrations Installation in any orientation Relatively long lifetime Relatively low cost Limited but high H₂ capacity 	 Low capture probability Gas Selectivity and limited capacity Memory effects (in particular for rare gases) Ignition in 10⁻⁵ mbar range Bulky Difficult starting for old pumps Production of charged particles in particular at start-up Field emission problems for old pumps Fringing magnetic field Safety issue: high voltage

CERN	Comparison of Pumps				
	Advantages	Disadvantages			
Sublimation Pumps	 Clean vacuum High pumping speed for reactive gases With SIP, extremely low vacuum can be achieve Low cost Electrical power only for sublimation; it works in case of power cut Limited maintenance (filament change) No vibration 	 Very limited capacity Need frequent sublimations Ti film peel-off for high sublimation rates Selective pumping (no pumping of rare gases and methane) Risk of leakage current in high voltage insulators Relatively low working pressure 			
NEG pumps	 Clean vacuum High pumping speed for reactive gases With SIP, extremely low vacuum can be achieve High gas capacity for porous NEG Low cost Electrical power only for activation; it works in case of power cut No maintenance No vibration 	 Selective pumping (no pumping of rare gases and methane) H₂ embrittlement if regeneration is not applied Formation of dust particles is not excluded Possible peel-off of NEG deposited on metallic ribbons. Safety issue: pyrophoric, it burns when heated in air at high temperature 			
June 5th, 20	Paolo Chiggiato - CERN - N 12 Technology for Ion Sou	Jacuum 44 Irrces			

Comparison of Pumps				
	Advantages	Disadvantages		
Cryopumps	 Very large pumping speed for all gases Clean vacuum High pumping capacity Limited selectivity 	 Cost and maintenance Relatively large volume needed (including refrigerator) Gas release in case of power cut Reduced pumping efficiency for H₂ for high quantity of gas adsorbed: regeneration needed Need of valve on the main flange 		
	Conclus	ions		
	Paolo Chirgiato - CFF	N - Vacuum		

CÉRN		Basic No	Appendix 1 otions : Gas P	ressure	→	THE CERN Accelerator Scho	
Definitio	on of pressure	e: <i> Force com</i> ;	ponent in norm Surface area	al direction			
Unit of measurement: $\frac{[Force]}{[Surface]} \rightarrow \frac{N}{m^2} = Pa \rightarrow 10^5 Pa = 1 \ bar \rightarrow 1 \ atm = 1.013 \ bar$							
In vacuum te	In vacuum technology : <i>mbar or Pa</i>						
Still used in vacuum technology: $1 Torr = pressure \ exerted \ by \ a \ column \ of \ 1 \ mm \ of \ Hg; 1 \ atm = 760 \ Torr$							
		Pa	bar	atm	Torr]	
	1 Pa	1	10-5	9.87 10 ⁻⁶	7.5 10 ⁻³		
	1 bar 10 ² 1 0.987 750.06						
	1 atm 1.013 10 ⁵ 1.013 1 760						
	1 Torr	133.32	1.33 10 ⁻³	1.32 10 ⁻³	1		
June 5th, 2012 Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources					46		

CERN		Appendix 1 Basic Notions : Gas Pressur	e	The CERN Accelerator 5		
	Degree of Vacuum					
		Pressure boundaries [mbar]	Pressure boundaries [Pa]			
s f	Low Vacuum LV	1000-1	10 ⁵ -10 ²			
ion c urce	Medium Vacuum MV	1-10 ⁻³	10 ² -10 ⁻¹			
in so	High Vacuum HV	10 ⁻³ -10 ⁻⁹	10-1-10-7			
o p	Ultra High vacuum UHV	10 ⁻⁹ -10 ⁻¹²	10-7-10-10			
	Extreme Vacuum XHV	<10-12	<10 ⁻¹⁰			
Pressures and gas quantities are correlated by the gas equation of state. In vacuum the ideal gas law is always fulfilled : P V = n R T (thermodynamic) $P V = N k_B T$ (statistical mechanics) P pressure, V volume, T temperature, quantity of gas in moles (n) and number of						
molecules (N)						
R gas constant, k _B Boltzmann constant						
June 5th, 2012 Paolo Chiggiato - CERN - Vacuum 47 Technology for Ion Sources						

CER	App Basic Notion	Appendix 1 Basic Notions : Gas Quantity					
	$P V = Nk_BT \rightarrow P = {N \choose V} k_BT k_B = 1.38 \ 10^{-23} \ {Pa m^3 \over K}$	$= 1.04 \ 10^{22} \frac{Torr \ l}{K}$	cr.	$\int_{$			
		Pressure [Pa]	Gas Density 293 K	Gas Density 4.3K			
Ī	Atmosphere	1.013 10 ⁵	2.5 10 ¹⁹	1.7 10 ²¹			
Ī	Plasma chambers	1	2.5 10 ¹⁴	1.7 10 ¹⁶			
Ī	LINAC pressure upper limit	10-5	2.5 10 ⁹	1.7 10 ¹¹			
Ī	Lowest pressure ever measured at room T	10-12	250	1.7 10 ⁴			
-	Gas quantities can be expressed in:						
	 Number of molecules: N Moles: N/N_A (N_A = 6.022 10²³ [molecules]) PV quantities if the temperature is known and constant : P V = N(k_BT) 						
	Example: 1 Pa m ³ at 293K contains $N = \frac{1 [Pa.m^3]}{1.38.10^{-23} [\frac{J}{K}]^{293} [K]} = 2.47 \ 10^{20} \text{molecules}$						
	1 Torr I = 3.3 10 ¹⁹ molecules; 1 mbar I =2.47 10 ¹⁹ molecules June 5th, 2012 Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources 4						

CERT	Basic Notion	Appendix 1 s : Impingement R	ate with a Surfac	e The CENN ACCEPTED SOIN
	Gas	Pressure [mbar]	Impingement rate 293 K [cm ⁻² s ⁻¹]	
		10-3	1.1 1018	
	H2	10-8	1.1 1014	
		10-14	1.1 10 ⁸	
	NO	10-3	2.9 10 ¹⁷	
	INZ	10 ⁻⁸	2.9 10 ¹³	
	٨٢	10-3	2.4 10 ¹⁷	
	AI	10 ⁻⁸	2.4 10 ¹³	
$\varphi = \frac{1}{4}n\langle v \rangle =$	$\frac{1}{4}n\sqrt{\frac{8k_BT}{\pim}}$	φ[<i>cn</i>	$n^{-2}s^{-1}] = 2.635$	$10^{22} \frac{P \ [mbar]}{\sqrt{M[g]T[K]}}$
June 5th, 2012	Pa	aolo Chiggiato - CERN - Vacu Technology for Ion Source	uum S	50

R		App Basic Notions	pendix 1 : Knudsen Number	The CERN Acce			
$K_n = \frac{l}{D}$							
l i (p	s the me .ex. the c	an free path and D is a charad liameter of a beam pipe).	cteristic dimension of a vacuum system				
K _n	range	Regime	Description				
K _n >0	.5	Free molecular flow	The gas dynamic is dominated by molecular collisions with the walls of the system	he			
K _n <0	.01	Continuous (viscous) flow	The gas dynamic is dominated by intermolecular collisions				
0.5 <k< td=""><td><</td><td>Transitional flow</td><td>Transition between molecular and visc flow</td><td>ous</td></k<>	<	Transitional flow	Transition between molecular and visc flow	ous			
		Paolo Chiggiato	- CERN - Vacuum				

CERN	Appendix 1 Basic Notions : Conductance						
Conductanc	Conductance of a wall aperture in PV units, per unit area: $C' = \frac{1}{4} \langle v \rangle$						
T= 293 K	Gas	$\langle v \rangle$ at 293 K $\left[\frac{m}{s}\right]$	C'at 293 K $\left[\frac{m^3}{s m^2}\right]$	C' at 293 K $\left[\frac{l}{s \ cm^2}\right]$			
	H ₂	1761	440.25	44			
	Не	1244	311	31.1			
	CH ₄	622	155.5	15.5			
	H ₂ O	587	146.7	14.7			
	N ₂	470	11.75	11.75			
	Ar	394	98.5	9.85			
Example: $H_2 P_1 = 5 \ 10^{-4} mbar$, $P_2 = 7 \ 10^{-5} mbar$, $A = 0.8 \ cm^2$ $P_1 P_2 \rightarrow Q = 44 \times 0.8 \times (5 \ 10^{-4} - 7 \ 10^{-5}) = 1.5 \times 10^{-2} \frac{mbar \ l}{s}$ $\rightarrow Q = 1.5 \times 10^{-2} \frac{mbar \ l}{s} \times 2.47 \ 10^{19} \frac{molecules}{mbar \ l} = 3.74 \ 10^{17} \frac{molecules}{s}$							
June 5th, 2012 Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources					56		

CERN	Appendix 3: Extra Info About Outgassin	g
CONTAMINATION/ DEFECTS		SURFACE TREATMENTS
oils, dirt> CxHy, HzO, Cl,>	J///GROSS CONTARINATION//// SORPTION LAYER (vinm)	Solvent or detorgent cleaning
Mex Oy ->	OXIDELAYER (1-10 nm)	- Chemical pickling
dislocations, voids ->	DAMAGED SKIN (10-100,00m) -	- Etching or electropolishing
	UNDAMAGED METAL	
Solvents : their mole (dilution) -> quite se	ecules interact and transport contamin elective! (C ₂ Cl ₄ , wide spectrum; HFC, m	ants away by diffusion nore restricted action)
Detergents in wate (surfactant: surface and lipophilic tail: le	r: allows organics and water to combin acting agent). Based on molecule wit ass selective than solvents	e by forming micelle h hydrophilic heads
June 5th, 2012	Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources	64

CÉRN	Appendix 4: Extra Info about SIP	
• • •	Hydrogen pumping by SIP H ₂ is mainly pumped by diffusion into the cathode. To be adsorbed, H ₂ must be dissociated. Only 2.5% of the ions created in a low-pres H ₂ Penning discharge are H+ ions. The dissociation is possible only on atomically clean Ti. H ₂ + ions have poor sputtering yield: 0.01 at 7 KeV on Ti.	ssure
•	When H_2 is the main gas, it takes a long time to clean the cathode surface by sputter As a consequence, at the beginning of the operation the pumping speed for H_2 is low than the nominal and increases gradually with time. The simultaneous pumping of another gas has strong effects on H2 pumping speed	ering. Swer I.
	 Higher sputtering yield→faster cleaning→ higher pumping speed Contaminating of the Ti surface→ lower pumping speed Desorption of implanted H ions→ lower pumping speed 	؛d
•	When the concentration of H_2 is higher than the solubility limit in Ti, hydride precipitates are formed \rightarrow Ti expansion and hydrogen embrittlement \rightarrow short circuit and cathode brittleness (for 500 l/s pumps: typical value are 10000 Torr l of H_2)	its
J	une 5th, 2012 Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources	68

CERN	Appendix 6:	$\dot{\mathbf{c}}$	
Ch	Extra Info about Cryopumps	The CERN Accelerator Scho	
1.	Starting Pressure		
	 Cryopumps should be started when the mean free path of molecules is higher the pump vessel diameter: P<10⁻³ mbar. Otherwise the thermal load is too high In addition a thick condensate layer must be avoided. They need auxiliary pumps. 	than n.	
2.	 Pumping speed High effective pumping speed for all gases. Pumping speed from 800 l/s up to 0 l/s are commercially available. Pumping speed for water vanour close to the theoretical maximum 	60000	
3.	Maximum Gas Intake (Capacity)		
	 At the maximum intake of a specific gas, its pumping speed is reduced to below % of the initial value. 	w 50	
	 Condensed gases: the limitation is given by the thermal conductivity of the gas layer. Adsorbed gases: the capacity depends on the quantity and properties of the sorption agent; it is pressure dependent and generally several orders of magnitude lower compared to that of condensable gases. 		
J	ne 5th, 2012 Paolo Chiggiato - CERN - Vacuum Technology for Ion Sources	72	

