Introduction to Longitudinal Beam Dynamics

Bernhard Holzer, **CERN-LHC**

crab nebula, burst of charged particles E=10²⁰ eV

Bibliography:

- 1.) P. Bryant, K. Johnsen: The Principles of Circular Accelerators and Storage Rings Cambridge Univ. Press
- 2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttaart 1992
- 3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN School: 5th general acc. phys. course
- CERN 94-0 4.) Bernhard Holzer: Lattice Design, CERN Acc. . Acc. phys course http://cas.web.cern.ck CAS Proc. N/lectures-zeuthen.htm cern report: CEP
- 5.) A.Chao, M.Tigner: Hand erator Physics and Engineering, orld Scientific, 1999.
- And Joel LeDuff. and Design of Chargged Particle Beams 6.) Martin F Viley-VCH, 2008

7.) Frank Flinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997

- 8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
- 9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

high voltage can only be applied once per particle ...
 or twice ?

... we have to start again from the basics

Lorentz force

Hence:

in long. direction the B-field creates no force

v || *B*

acc. force is given by the electr. Field

In relativistic dynamics, energy and momentum satisfy the relation:

$$E^{2} = E_{0}^{2} + p^{2}c^{2} \qquad (E = E_{0} + W)$$
$$dE = \int Fds = vdp$$

and the kinetic energy gained from the field along the z path is:

$$dW = dE = eE_z ds \implies W = e\int E_z ds = eV$$

The "Tandem principle": Apply the accelerating voltage twice by working with negative ions (e.g. H⁻) and stripping the electrons in the centre of the structure $W = e \int E_z ds = eV$ $dW = dE = eE_{z}ds$ nota bene: all particles are "synchron" with the acceleration potential

Electro Static Accelerator: 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:

Energy gained after n acceleration gaps

$$E_n = n * q * U_0 * \sin \psi_s$$

n number of gaps between the drift tubes **q** charge of the particle U_0 Peak voltage of the RF System Ψ_S synchronous phase of the particle

* the problem of synchronisation ... between the particles and the rf voltage

* "voltage has to be flipped" to get the right sign in the second gap

→ shield the particle in drift tubes during the negative half wave of the RF voltage

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

Time span of the negative half wave: $\tau_{\rm RF}/2$ Length of the Drift Tube: $l_i = v_i * \frac{\tau_{rf}}{2}$ $\rightarrow v_i = \sqrt{2E_i/m}$ Kinetic Energy of the Particles $E_i = \frac{1}{2}mv^2$ $l_i = \frac{1}{v_{rf}} * \sqrt{\frac{i*q*U_{0*\sin\psi_s}}{2m}}$

valid for non relativistic particles ...

Alvarez-Structure: 1946, surround the whole structure by a rf vessel Energy: ≈ 20 MeV per Nucleon $\beta \approx 0.04$... 0.6, Particles: Protons/Ions GSI: Unilac, typical Energie ≈ 20 MeV per Nukleon, β ≈ 0.04 ... 0.6, Protons/Ions, v = 110 MHz Energy Gain per "Gap": $W = q U_0 \sin \omega_{RF} t$

Application: until today THE standard proton / ion pre-accelerator CERN Linac 4 is being built at the moment

$$F = q^* (v \times B) = q^* v$$

circular orbit

$$q * v * B = \frac{m * v^2}{R} \implies B * R = p/q$$

increasing radius for
increasing momentum
→ Spiral Trajectory

revolution frequency

$$\omega_z = \frac{v}{R} = \frac{q}{m} * B_z$$

the cyclotron (rf-) frequency is independent of the momentum

rf-frequency = **h*** **revolution frequency**, **h** = "harmonic number"

exact equation for revolution frequency:

$$\omega_z = \frac{v}{R} = \frac{q}{\gamma * m} * B_z$$

1.) if
$$v \ll c \Rightarrow \gamma \cong 1$$

 $\gamma \omega_{\rm RF} = {\rm constant}$ ω_{RF} decreases with time

$$\omega_{s}(t) = \omega_{rf}(t) = \frac{q}{\gamma(t) * m_{0}} * B$$

keep the synchronisation condition by varying the rf frequency

$$\frac{q}{*m_0}*B$$

RF Cavities, Acceleration and Energy Gain

$$dW = dE = eE_z ds \implies W = e\int E_z ds = eV$$

RF acceleration: $V \neq const$

In this case the electric field is oscillating. So it is for the potential. The energy gain will depend on the RF phase experienced by the particle.

Energy Gain in RF structures: Transit Time Factor

Oscillating field at frequency ω (amplitude is assumed to be constant all along the gap)

$$E_z = E_0 \cos \omega t = \frac{V}{g} \cos \omega t$$

Consider a particle passing through the middle of the gap at time t=0 : z = vt

The total energy gain is:

$$\Delta W = \frac{eV}{g} \int_{-g/2}^{g/2} \cos \omega \frac{z}{v} dz$$

$$\Delta W = eV \frac{\sin\theta/2}{\theta/2} = eVT$$

 $T = \frac{\sin\theta/2}{\theta/2}$ transit time factor (0 < T < 1)

 $\theta = \frac{\omega g}{v}$ transit angle

The Synchrotron (Mac Millan, Veksler, 1945)

Momentum Compaction Factor: α_p

particle with a displacement x to the design orbit \rightarrow path length dl ...

$$\frac{dl}{ds} = \frac{\rho + x}{\rho}$$
$$\rightarrow dl = \left(1 + \frac{x}{\rho(s)}\right) ds$$

circumference of an off-energy closed orbit

$$l_{\Delta E} = \oint dl = \oint \left(1 + \frac{x_{\Delta E}}{\rho(s)}\right) ds$$

remember:

$$x_{\Delta E}(s) = D(s) \frac{\Delta p}{p}$$

$$\delta l_{\Delta E} = \frac{\Delta p}{p} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$

* The lengthening of the orbit for off-momentum particles is given by the dispersion function and the bending radius.

Definition:

$$\frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

$$\Rightarrow \alpha_p = \frac{1}{L} \oint \left(\frac{\boldsymbol{D}(s)}{\rho(s)} \right) ds$$

For first estimates assume:

$$\frac{1}{\rho} = const.$$

$$\int_{dipoles} D(s) ds \approx l_{\Sigma(dipoles)} \cdot \langle D \rangle_{dipole}$$

$$\alpha_{p} = \frac{1}{L} l_{\Sigma(dipoles)} \cdot \langle D \rangle \frac{1}{\rho} = \frac{1}{L} 2\pi \rho \cdot \langle D \rangle \frac{1}{\rho} \quad \Rightarrow \quad \alpha_{p} \approx \frac{2\pi}{L} \langle D \rangle \approx \frac{\langle D \rangle}{R}$$

Assume: $v \approx c$

$$\Rightarrow \quad \frac{\delta T}{T} = \frac{\delta l_{\varepsilon}}{L} = \alpha_p \frac{\Delta p}{p}$$

 α_p combines via the dispersion function the momentum spread with the longitudinal motion of the particle.

Dispersion Effects in a Synchrotron

If a particle is slightly shifted in momentum it will have a different orbit:

$$\alpha = \frac{p}{R} \frac{dR}{dp}$$

This is the "momentum compaction" generated by the bending field.

If the particle is shifted in momentum it will have also a different velocity. As a result of both effects **the revolution frequency changes:**

p=particle momentum R=synchrotron physical radius f_r=revolution frequency

$$\eta = \frac{p}{f_r} \frac{df_r}{dp}$$

Dispersion Effects in a Synchrotron

changes sign during acceleration.

Particles get faster in the beginning – *and arrive earlier at the cavity: classic regime*

Particles travel at v =c and get more massive – and arrive later at the cavity: relativistic regime

boundary between the two regimes: no frequency dependence on dp/p, $\eta = 0$ "transition energy"

14.) The Acceleration for △p/p≠0"Phase Focusing" below transition

... so sorry, here we need help from Albert:

... some when the particles do not get faster anymore

.... but heavier !

```
kinetic energy of a proton
```

15.) The Acceleration for Δp/p≠0"Phase Focusing" above transition

... and how do we accelerate now ??? with the dipole magnets !

Energy ramping is simply obtained by varying the B field:

$$p = eB\rho \implies \frac{dp}{dt} = e\rho \dot{B} \implies (\Delta p)_{turn} = e\rho \dot{B}T_r = \frac{2\pi \ e\rho \ RB}{v}$$

$$E^{2} = E_{0}^{2} + p^{2}c^{2} \implies \Delta E = v\Delta p$$
$$\Delta E_{turn} = \Delta W_{turn} = 2\pi e\rho R\dot{B} = e\hat{V}\sin\phi_{s}$$

- * The energy gain depends on the rate of change of the dipole field
- * The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.
- * Each synchronous particle satifies the relation $p = eB\rho$. They have the nominal energy and follow the nominal trajectory.

The Synchrotron: Frequency Change

During the energy ramping, the RF frequency increases to follow the increase of the revolution $\longrightarrow \omega_r = \frac{\omega_{RF}}{h} = \omega(B, R_s)$ frequency :

hence:
$$\frac{f_{RF}(t)}{h} = \frac{v(t)}{2\pi R_s} = \frac{1}{2\pi} \frac{e}{m} < B(t) > \implies \frac{f_{RF}(t)}{h} = \frac{1}{2\pi} \frac{ec^2}{E_s(t)} \frac{r}{R_s} B(t)$$

Since $E^2 = (m_0 c^2)^2 + p^2 c^2$

The RF frequency must follow the variation of the **B** field with the law :

$$\frac{f_{RF}(t)}{h} = \frac{c}{2\pi R_s} \left\{ \frac{B(t)^2}{(m_0 c^2 / ecr)^2 + B(t)^2} \right\}^{\frac{1}{2}}$$
$$B > \frac{m_0 c^2}{ecr} \qquad \frac{f_{RF}(t)}{h} \approx \frac{c}{2\pi R_s} = const$$

and as soon as

which is true for LHC at high energy and for electrons from the start

2

Longitudinal Dynamics: synchrotron motion

We have to follow two coupled variables:

* the energy gained by the particle

* and the RF phase experienced by the same particle.

Since there is a well defined synchronous particle which has always the same phase ϕ_s , and the nominal energy E_s , it is sufficient and elegant to follow other particles with respect to that particle.

We will introduce the following relative variables:

revolution frequency	y:	$\Delta f_r = f_r - f_{rs}$
particle RF phase	:	$\Delta \varphi = \varphi - \varphi_s$
particle momentum	:	$\Delta p = p - p_s$
particle energy	•	$\Delta E = E - E_s$
azimuth angle	•	$\Delta \theta = \theta - \theta_{\rm s}$

The Equation of Motion:

First Energy-Phase Equation: *energy offset ←→ phase change*

 $f_{RF} = hf_r \implies \Delta \phi = -h\Delta \theta \quad with \quad \theta = \int \omega_r dt$

For a given particle with respect to the reference one:

$$d\omega_{r} = \frac{d}{dt} (\Delta \theta) = -\frac{1}{h} \frac{d}{dt} (\Delta \phi) = -\frac{1}{h} \frac{d\phi}{dt}$$

ince: $\eta = \frac{p_{s}}{\omega_{rs}} \left(\frac{d\omega_{r}}{dp} \right)_{s} \rightarrow dp = \frac{p}{\eta} * \left(\frac{d\omega_{r}}{dp} \right)_{s}$

S

and from relativity we know: $\Delta E = v_s \Delta p = \omega_{rs} R_s \Delta p$

one gets:
$$\frac{\Delta E}{\omega_{rs}} = -\frac{p_s R_s}{h \eta \omega_{rs}} \frac{d(\Delta \phi)}{dt} = -\frac{p_s R_s}{h \eta \omega_{rs}} \dot{\phi}$$

The energy deviation from the synchronous particle depends on the rate of change of the phase.

Second Energy-Phase Equation energy offset <-> RF voltage

energy gain per turn:

$$\Delta E_{turn} = e\hat{V}\sin\phi \qquad \qquad \Delta E = v \Delta p$$
$$\Delta p_{turn} = \frac{e\hat{V}}{\omega R}\sin\phi \qquad \qquad v = \omega R$$

$$\dot{p} = \frac{\Delta p_{turn}}{T} = \frac{\Delta p_{turn}}{2\pi}\omega = \frac{e\hat{V}}{2\pi R}\sin\phi$$

$$2\pi R\dot{p} = e\hat{V}\sin\phi$$

difference to the synchr. particle:

 $2\pi \Delta (R\dot{p}) = e\hat{V}(\sin\phi - \sin\phi_s)$

Second Energy-Phase Equation momentum offset <-> geometry

$$\Delta(R\dot{p}) = R\dot{p} - R_s\dot{p}_s = (R_s + \Delta R) * (\dot{p}_s + \Delta \dot{p}) - R_s\dot{p}_s$$

$$= R_s\dot{p}_s + R_s\Delta\dot{p} + \Delta R\dot{p}_s + \Delta R\dot{p}_s + \Delta R\Delta\dot{p} - R_s\dot{p}_s$$

$$= R_s\Delta\dot{p} + \Delta R\dot{p}_s = R_s\Delta\dot{p} + \dot{p}_s * \left(\frac{dR}{dp}\right)_s\Delta p = R_s\Delta\dot{p} + \frac{dp_s}{dt}\left(\frac{dR}{dp}\right)_s\Delta p$$

$$= R_s\Delta\dot{p} + \dot{R}_s\Delta p = \frac{d}{dt}(R_s\Delta p) = \frac{d}{dt}(\frac{\Delta E}{\omega_s})$$
... put into the green equation ... to get
$$2\pi \Delta(R\dot{p}) = e\hat{V}(\sin\phi - \sin\phi_s)$$

$$2\pi \frac{d}{dt} (\frac{\Delta E}{\omega_s}) = e\hat{V}(\sin\phi - \sin\phi_s)$$

the rate of energy change is determined by the distance in phase in the sinusoidal rf voltage function

Equations of Longitudinal Motion

This rather formidable looking differential equation simplifies a lot if we consider ...

 $R_{s,} p_{s,} \omega_{s}$, η as constant (or slowly varying with time).

Small Amplitude Oscillations

Let's assume constant parameters R_s , p_s , ω_s and η : $\Omega_s^2 = \frac{h\eta\omega_{rs}e\hat{V}\cos\phi_s}{2\pi R_s n_s}$ $\ddot{\phi} + \frac{\Omega_s^2}{\cos\phi_s} (\sin\phi - \sin\phi_s) = 0$ with Consider now small phase deviations from the reference particle: K M Stable synchr. parti $\sin\phi - \sin\phi_s = \sin(\phi_s + \Delta\phi) - \sin\phi_s \approx \cos\phi_s \Delta\phi$ Φ, π - Φ.

and the corresponding linearized motion reduces to a harmonic oscillation:

$$\ddot{\phi} + \Omega_s^2 \Delta \phi = 0$$
 stable for $\Omega_s^2 > 0$ and Ω_s real

Small Amplitude Oscillations: phase stability

We get a harmonic oscillation of the particle phase with the oscillation frequency

$$\vec{\phi} + \Omega_s^2 \Delta \phi = 0 \qquad \qquad \Omega_s = \sqrt{\frac{h\eta \omega_{rs} e \hat{V} \cos \phi_s}{2\pi R_s p_s}} \qquad remember \quad \eta = \frac{1}{\gamma^2} - \alpha$$
Stability condition: Ω_s real $\Omega_s^2 > 0$
 $\gamma < \gamma_{tr} \quad \eta > 0 \qquad 0 < \phi_s < \pi/2$
 $\gamma > \gamma_{tr} \quad \eta < 0 \qquad \pi/2 < \phi_s < \pi$

And we will find this situation "h"-times in the machine

LHC:

γ

γ

35640 Possible Bunch Positions ("buckets") 2808 Bunches

 $\Phi_{\rm s}$

 $\pi - \Phi_s$

* of an electrical potential

-> weak force <-> small frequncy

 $\omega_{RF}^{t}t = \Phi$

The RF system: IR4

4xFour-cavity cryo module 400 MHz, 16 MV/beam Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Bunch length (40)	ns	1.06
Energy spread (20)	10-3	0.22
Synchr. rad. loss/	ke	7
turn	V	3.6
Synchr. rad. power	kW	
RF frequency	М	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	ke V	485
Synchrotron frequency	Hz	23.0

(small) ... Synchrotron Oscillations in Energy and Phase

Large Amplitude Oscillations

Equation of motion: $\ddot{\phi} + \frac{\Omega_s^2}{\cos\phi_s} (\sin\phi - \sin\phi_s) = 0$

There are two positions (in fact three) where a particle does not get any phase focusing force, $\ddot{\Phi} = 0$: at $\Phi = \Phi_s$ (i.e. the ideal position)

and at $\Phi = \pi - \Phi_s$

When ϕ reaches π - ϕ_s the force goes to zero and beyond it becomes non restoring. Hence π - ϕ_s is an extreme amplitude for a stable motion which in the phase space $(\dot{\phi}/\Omega_s, \Delta\phi)$ is shown as closed trajectories.

The phase curve, that belongs to $\Phi = \Phi_s$ separates the stable from the unstable regime

Equation of the separatrix:

$$\frac{\phi^2}{2} - \frac{\Omega_s^2}{\cos\phi_s} \left(\cos\phi + \phi\sin\phi_s\right) = -\frac{\Omega_s^2}{\cos\phi_s} \left(\cos(\pi - \phi_s) + (\pi - \phi_s)\sin\phi_s\right)$$

LHC Commissioning: RF

We have to match these conditions:

phase (i.e. timing between rf and injected bunch) has to correspond to ϕ_s

long. acceptance of injected beam has to be smaller than bucket area of the synchrotron.

RF on, phase adjusted, beam captured

max stable energy: set $\phi = \phi_s$ and calculate ΔE

$$\left(\Delta E_{\max}\right)_{sep} = \sqrt{\frac{p_s v_s e V_0}{2\pi h \eta_s}} * \sqrt{|4\cos\phi_s - (2\pi - 4\phi_s)\sin\phi_s|}$$

LHC injection: acceptance: 1.4eVs long emittance: 1.0 eVs

Than'x

APPENDIX:

Improved Capture With Pre-buncher

A long bunch coming from the gun enters an RF cavity; the reference particle is the one which has no velocity change. The others get accelerated or decelerated. After a distance L bunch gets shorter while energies are spread: bunching effect. This short bunch can now be captured in the following rf structures.

Improved Capture With Pre-buncher

The bunching effect is a space modulation that results from a velocity modulation and is similar to the phase stability phenomenon. Let's look at particles in the vicinity of the reference one and use a classical approach.

Energy gain as a function of cavity crossing time:

$$\Delta W = \Delta \left(\frac{1}{2}m_0 v^2\right) = m_0 v_0 \Delta v = eV_0 \sin \phi \approx eV_0 \phi \qquad \Delta v = \frac{eV_0 \phi}{m_0 v_0}$$

Perfect linear bunching will occur after a time delay τ , corresponding to a distance L, when the path difference is compensated between a particle and the reference one:

$$\Delta v.\tau = \Delta z = v_0 t = v_0 \frac{\phi}{\omega_{RF}}$$

(assuming the reference particle enters the cavity at time t=0)

Since $L = v\tau$ one gets:

$$L = \frac{2v_0 W}{e V_0 \omega_{RF}}$$