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Basic Equations from Vector 
Calculus

  

 

For a vector
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For a scalar function! x,y,z,t( ),

gradient : "! = #!
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Gradient is normal to surfaces 
φ=constant
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∇ · �F ∧ �G = �G ·∇∧ �F − �F ·∇∧ �G

∇∧∇φ = 0, ∇ ·∇∧ �F = 0

∇∧ (∇∧ �F ) = ∇(∇ · �F )−∇2 �F
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Stokes’ Theorem Divergence or Gauss’ 
Theorem
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Closed surface S, volume V, 
outward pointing normal

Basic Vector Calculus
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What is Electromagnetism?

• The study of Maxwell’s equations, devised in 1863 to 
represent the relationships between electric and magnetic 
fields in the presence of electric charges and currents, 
whether steady or rapidly fluctuating, in a vacuum or in 
matter.

• The equations represent one of the most elegant and 
concise way to describe the fundamentals of electricity and 
magnetism. They pull together in a consistent way earlier 
results known from the work of Gauss, Faraday, Ampère, 
Biot, Savart and others.

• Remarkably, Maxwell’s equations are perfectly consistent 
with the transformations of special relativity.
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Maxwell’s Equations
Relate Electric and Magnetic fields generated by 
charge and current distributions.
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�E = electric field

�D = electric displacement

�H = magnetic field

�B = magnetic flux density

ρ = electric charge density

�j = current density

µ0 = permeability of free space, 4π 10−7

�0 = permittivity of free space, 8.854 10−12

c = speed of light, 2.99792458 108

In vacuum: �D = �0 �E, �B = µ0
�H, �0µ0c

2 = 1

∇ · �D = ρ

∇ · �B = 0

∇∧ �E = −∂ �B

∂t

∇∧ �H = �j +
∂ �D

∂t
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Equivalent to Gauss’ Flux Theorem:

The flux of electric field out of a closed region is proportional to the total 
electric charge Q enclosed within the surface.

A point charge q generates an electric field:

Maxwell’s 1st Equation 

Area integral gives a measure of the net charge enclosed; divergence of 
the electric field gives the density of the sources.

∇ · �E =
ρ

�0

∇ · �E =
ρ

�0
⇐⇒

���

V

∇ · �E dV =

��

S

�E · d�S =
1

�0

���

V

ρ dV =
Q

�0

�E =
q

4π�0

�r

r3

=⇒
��

sphere

�E · d�S =
q

4π�0

��

sphere

dS

r2
= q
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Gauss’ law for magnetism:  

 

The net magnetic flux out of any 
closed surface is zero. Surround a 
magnetic dipole with a closed surface. 
The magnetic flux directed inward 
towards the south pole will equal the 
flux outward from the north pole. 

If there were a magnetic monopole 
source, this would give a non-zero 
integral. 

∇ · �B = 0 Maxwell’s 2nd Equation 

Gauss’ law for magnetism is then a statement that
There are no magnetic monopoles
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∇ · �B = 0 ⇐⇒
��

�B · d�S = 0
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∇∧ �E = −∂ �B

∂t

Equivalent to Faraday’s Law of Induction:

(for a fixed circuit C)

The electromotive force round a circuit !          !!!!!!!                       

       is proportional to the rate of change of flux of 

magnetic field       !!!!!!!!!!!!     through the circuit. 

Maxwell’s 3rd Equation 

! "= ldE
!!

#

N S

Faraday’s Law is the basis for electric generators. It also 
forms the basis for inductors and transformers.

!! "=# SdB
!!
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��

S

∇∧ �E · d�S = −
��

S

∂ �B

∂t
· d�S

⇐⇒
�

C

�E · d�l = − d

dt

��

S

�B · d�S = −dΦ

dt
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∇∧ �B = µ0
�j +

1
c2

∂ �E

∂t
Maxwell’s 4th Equation

Originates from Ampère’s (Circuital) Law :

Satisfied by the field for a steady line current (Biot-Savart 
Law, 1820):
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Biot

∇∧ �B = µ0
�j
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∇∧ �B = µ0(�j +�jd) = µ0
�j + �0µ0

∂ �E

∂t
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Displacement Current

Surface 1 Surface 2

Closed loop

Current I

! Apply Ampère to surface 1 (flat disk): line 
integral of B =μ0I

! Applied to surface 2, line integral is zero 
since no current penetrates the deformed 
surface.

! In capacitor,                 , so

! Displacement current density is
t
Ejd !
!=
!

!
0"

dt
dEA

dt
dQI 0!==

 

E =
Q
!0A
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Consistent with Charge Conservation

Charge conservation: 
Total current flowing out of a region 
equals the rate of decrease of charge 
within the volume. 

Charge conservation is implicit in Maxwell’s Equations

��
�j · d�S = − d

dt

���
ρ dV

⇐⇒
���

∇ ·�j dV = −
���

∂ρ

∂t
dV

⇐⇒ ∇ ·�j + ∂ρ

∂t
= 0

From Maxwell’s equations:
Take divergence of Ampère’s equation 
(incl. displacement current)

∇∧ �B = µ0
�j +

1

c2
∂ �E

∂t

=⇒ ∇ ·∇∧ �B = µ0∇ ·�j + 1

c2
∂

∂t

�
∇ · �E

�

=⇒ 0 = ∇ ·�j + �0µ0
∂

∂t

�
ρ

�0

�

=⇒ 0 = ∇ ·�j + ∂ρ

∂t
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In vacuum:

�D = �0 �E, �B = µ0
�H, �0µ0c

2 = 1

Source-free equations:

∇ · �B = 0

∇∧ �E +
∂ �B

∂t
= 0

Source equations:

∇ · �E =
ρ

�0

∇∧ �B − 1

c2

∂ �B

∂t
= µ0

�j

Equivalent integral form (useful for
simple geometries):

��
�E · d�S =

1

�0

���
ρ dV

��
�B · d�S = 0

�
�E · d�l = − d

dt

��
�B · d�S = −dΦ

dt�
�B · d�l = µ0

��
�j d�S +

1

c2
d

dt

��
�E · d�S

Maxwell’s Equations in Vacuum
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Example: Calculate E from B
�

�E · d�l = − d
dt

��
�B · d�S

!
"
#

>
<

=
0

00

0
sin

rr
rrtB

Bz
$

trBE

tBrtBr
dt
drErr

!!

!!"!""

#

#

cos
2
1

cossin2

0

0
2

0
2

0

$=%

$=$=<

t
r
BrE

tBrtBr
dt
drErr

!!

!!"!""

#

#

cos
2

cossin2

0
2
0

0
2
00

2
00

$=%

$=$=>

Also from 
  

 

!"
! 
E = #

$
! 
B 
$t

dt
E

c
jB

!
!! !+="# 20

1µ then gives current density necessary 
to sustain the fields

r

z
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�
�E · d�l = − d

dt

��
�B · d�S

=⇒ 2πrEθ = −dΦ
dt

The Betatron
Magnetic 
flux, !

Generated 
E-field

r

Particles accelerated by the rotational 
electric field generated by a time-varying 
magnetic field

16

−mv2

r
= evB =⇒ B = − p

er

=⇒ ∂

∂t
B(r, t) = − 1

er

dp

dt
= −E

r
=

1
2πr2

dΦ
dt

=⇒ B(r, t) =
1
2

1
πr2

��
B dS

B-field on orbit needs to be one half the average B over the circle. This imposes a limit on the 
energy that can be achieved. Nevertheless the constant radius principle is attractive for high 
energy circular accelerators.

For circular motion at a  constant radius:
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∇ · �B = 0 =⇒
���

∇ · �B dV =

��
�B · d�S = 0

=⇒
�
�n · �B+ − �n · �B−

�
∆S = 0

=⇒
�
�n · �B

�+
−
= 0

∇ · �D = ρ =⇒
���

∇ · �D dV =

��
�D · d�S =

���
ρ dV

=⇒
�
�n · �D+ − �n · �D−

�
∆S = σ∆S

=⇒
�
�n · �D

�+
−
= σ where σ is the surface charge density

Boundary Conditions I

17

+

-

n

S

Maxwell’s equations involving divergence can be 
integrated over a small “pillbox” across the 
boundary surface
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∇∧ �E = −∂ �B

∂t
=⇒

��
∇∧ �E · d�S =

�
�E · d�l = − d

dt

��
�B · d�S

=⇒
�
�E+
� − �E−

�

�
∆l → 0

=⇒
�
�n ∧ �E

�+
−
= 0

∇∧ �H = �j +
∂ �D

∂t
=⇒

��
∇∧ �H · d�S =

�
�H · d�l =

��
�j · d�S +

d

dt

��
�D · d�S

=⇒
�
�H+
� − �H−

�

�
∆l → �K∆l

=⇒
�
�n ∧ �H

�+
−
= �K where �K is the surface current density

Boundary Conditions II
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+

-
C

l

n

Maxwell’s equations involving curl can be integrated over a closed 
contour close to, and straddling, the boundary surface
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Lorentz Force Law
• Thought of as a supplement to Maxwell’s equations but actually 

implicit in relativistic formulation, gives force on a charged particle 
moving in an electromagnetic field:

• For continuous distributions, use force density

• Relativistic equation of motion

– 4-vector form:

– 3-vector component:       Energy component:

 

!
f = q

!
E + !v !

!
B( )

  

 

! 
f d = !

! 
E +
! 
j "
! 
B 

F =
dP

dτ
=⇒ γ

�
�v · �f

c
, �f

�
= γ

�
1
c

dE

dt
,
d�p

dt

�

d

dt

�
m0γ�v

�
= �f = q

�
�E + �v ∧ �B

�
�v · �f =

dE

dt
= m0c

2 dγ

dt
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d

dt

�
m0γ�v

�
= �f = q

�
�E + �v ∧ �B

�
= q�v ∧ �B

d

dt

�
m0γc

2
�
= �v · �f = q�v · �v ∧ �B = 0

Motion of Charged Particles in Constant 
Magnetic Fields

1. From energy equation, ! is constant

2. From momentum equation,

20

No acceleration with a magnetic field

|�v| constant and |�v�| constant
=⇒ |�v⊥| also constant
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Motion in Constant Magnetic Field

Constant magnetic field gives 
uniform spiral about B with 

constant energy.
Magnetic Rigidity

21
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d

dt

�
m0γ�v

�
= �f = q

�
�E + �v ∧ �B

�
=⇒ d

dt

�
m0γ�v

�
= q �E

Solution is γ�v =
q �E

m0
t

Then γ2 = 1 +

�
γ�v

c

�2

=⇒ γ =

����1 +

�
q �Et

m0c

�2

If �E = (E, 0, 0),
dx

dt
=

(γv)

γ
=⇒ x = x0 +

m0c2

qE




�

1 +

�
qEt

m0c

�2

− 1





≈ x0 +
1

2

�
qE

m0

�
t2 for qE � m0c

Energy gain is m0c
2(γ − 1) = qE(x− x0)
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Motion in Constant Electric Field

Constant E-field gives uniform acceleration in straight line
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�E =
q

4π�0

�r

r3
, �B = 0

• According to observer O in frame F, particle has velocity v, fields are E and 
B and Lorentz force is 

• In Frame F’, particle is at rest and force is 

• Assume measurements give same charge and force, so

• Point charge q at rest in F:

• See a current in F’, giving a field

• Suggests

Relativistic Transformations of E and B

�f = q
�

�E + �v × �B
�

�f � = q� �E�

q� = q and �E� = �E + �v × �B

�B� = −µ0q

4π

�v × �r

r3
= − 1

c2
�v × �E

�B� = �B − 1
c2

�v × �E

23
Monday, 28 May 2012

�E =
q

4π�0

�r

r3
, �B = 0

• According to observer O in frame F, particle has velocity v, fields are E and 
B and Lorentz force is 

• In Frame F’, particle is at rest and force is 

• Assume measurements give same charge and force, so

• Point charge q at rest in F:

• See a current in F’, giving a field

• Suggests

Relativistic Transformations of E and B

Rou
gh

 id
ea

�f = q
�

�E + �v × �B
�

�f � = q� �E�

q� = q and �E� = �E + �v × �B

�B� = −µ0q

4π

�v × �r

r3
= − 1

c2
�v × �E

�B� = �B − 1
c2

�v × �E

�E�
⊥ = γ

�
�E⊥ + �v × �B

�
, �E�

� = �E�

�B�
⊥ = γ

�
�B⊥ −

�v × �E

c2

�
, �B� = �B�

23
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Potentials

• Magnetic vector potential

• Electric scalar potential

• Lorentz gauge

24

Monday, 28 May 2012

25

Electromagnetic 4-Vectors

• Lorentz gauge

• Current 4-vector

• Continuity equation

Monday, 28 May 2012
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Relativistic Transformation of Potentials

• 4-potential vector:

• Lorentz transformation

Monday, 28 May 2012

• Rate of doing work on unit volume of a system is

• Substitute for    from Maxwell’s equations and re-arrange:

• For linear, non-dispersive media where

27

Electromagnetic Energy 

Poynting vector

 
!
j
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Energy Conservation

28

electric + magnetic 
energy densities of 

the fields

Poynting vector gives 
flux of e/m energy 
across boundaries

• Integrated over a volume, this represents an energy 
conservation law: 

– the rate of doing work on a system equals the rate of 
increase of stored electromagnetic energy+ rate of energy 
flow across boundary.

Monday, 28 May 2012

Review of Waves

• 1D wave equation is                         with general 
solution

• Simple plane wave: 

  

 

1D : sin ! t " k x( ) 3D : sin ! t "
! 
k #
! 
x ( )

∂2u

∂x2
=

1
v2

∂2u

∂t2

u(x, t) = f(vt− x) + g(vt + x)

Wavelength is λ =
2π

|�k|

Frequency is ν =
ω

2π

29
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ω∆t− k∆x = 0

⇐⇒ vp =
∆x

∆t
=

ω

k

vg =
dω

dk

Superposition of plane waves. While 
shape is relatively undistorted, pulse 
travels with the Group Velocity

Phase and group velocities

[ ]!
"

"#

# dkekA kxtki )()( $

Plane wave                     has constant 
phase                        at peaks

sin(ωt− kx)
ωt− kx = 1

2π

30
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Wave Packet Structure

• Phase velocities of individual plane waves making 
up the wave packet are different, 

• The wave packet will then disperse with time  

Monday, 28 May 2012



3D wave equation:

∇2 �E =
∂2 �E

∂x2
+

∂2 �E

∂y2
+

∂2 �E

∂z2
= µ�

∂2 �E

∂t2

Similarly for �H.

Electromagnetic waves travelling with

speed
1

√
�µ

Electromagnetic waves
• Maxwell’s equations predict the existence of electromagnetic waves, later 

discovered by Hertz.
• No charges, no currents:

32

Hertz
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Nature of Electromagnetic Waves
• A general plane wave with angular frequency ! travelling in the 

direction of the wave vector     has the form

• Phase                                 number of waves and so is a Lorentz 
invariant.

• Apply Maxwell’s equations:

• Waves are transverse to the direction of propagation;          and     are 
mutually perpendicular

�k

�E = �E0e
i(ωt−�k·�x), �B = �B0e

i(ωt−�k·�x)

∇ ↔ −i�k
∂

∂t
↔ iω

33

ωt− �k · �x = 2π×

�E, �B �k

Monday, 28 May 2012

Plane Electromagnetic Wave

34
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=⇒ speed of electromagnetic waves in vacuum is
ω

k
= c

Plane Electromagnetic Waves

!
"#

!$

2
Frequency

k
2Wavelength

=

= !
Reminder: The fact that                        is an 
invariant tells us that

                 

is a Lorentz 4-vector, the 4-Frequency vector. 
Deduce frequency transforms as

Λ =
�ω

c
,�k

�
ωt− �k · �x

ω� = γ(ω − �v · �k) = ω

�
c− v

c + v

∇∧ �B =
1
c2

∂ �E

∂t
⇐⇒ �k ∧ �B = − ω

c2
�E

Combined with �k ∧ �E = ω �B =⇒ | �E|
| �B|

=
ω

k
=

kc2

ω

35
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Waves in a Conducting Medium

• (Ohm’s Law) For a medium of conductivity !,                                      

• Modified Maxwell:                                   

• Put
conduction 

current
displacement 

current

4
0

8-

12
0

7

1057.21.2,103:Teflon

10,108.5:Copper
!"=#="=

=#="=

D
D

$$%
$$%

Dissipation 
factor 

�j = σ �E

∇∧ �H = �j + �
∂ �E

∂t
= σ �E + �

∂ �E

∂t

−i�k ∧ �H = σ �E + iω� �E
D =

σ

ω�

�E = �E0e
i(ωt−�k·�x), �B = �B0e

i(ωt−�k·�x)

36
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−i�k ∧ �H = σ �E + iω� �E ⇐⇒ �k ∧ �H = iσ �E − ω� �E = (iσ − ω�) �E

Combine with ∇∧ �E = −∂ �B

∂t
=⇒ �k ∧ �E = ωµ �H

=⇒ �k ∧ (�k ∧ �E) = ωµ�k ∧ �H = ωµ(iσ − ω�) �E

=⇒ (�k · �E)�k − k2 �E = ωµ(iσ − ω�) �E

=⇒ k2 = ωµ(−iσ + ω�) since �k · �E = 0

Wave-form is: ei(ωt−kx) = ei(ωt−(1−i)x/δ) = e−x/δei(ωt−x/δ)

Attenuation in a Good Conductor

37

For a good conductor, D � 1, σ � ω�, k2 ≈ −iωµσ

=⇒ k ≈
�

ωµσ

2
(1− i) =

1

δ
(1− i) where δ =

�
2

ωµσ
is the skin-depth

Monday, 28 May 2012

• Inside a conductor (Ohm’s law)

• Continuity equation is

• Solution is

• Charge density decays exponentially with time. For a very 
good conductor, charge flows instantly to the surface to 
form a surface current density and (for time varying fields) 
a surface current. Inside a perfect conductor:

Charge Density in a Conducting Material

�j = σ �E

ρ = ρ0 e−σt/�

39

∂ρ

∂t
+∇ ·�j = 0 ⇐⇒ ∂ρ

∂t
+ σ∇ · �E = 0

⇐⇒ ∂ρ

∂t
+

σ

�
ρ = 0.

(σ → ∞) �E = �H = 0

Monday, 28 May 2012

∇∧ �E = −∂ �B

∂t
= −iωµ �H

∇∧ �H =
∂ �D

∂t
= iω� �E






=⇒

∇2 �E = ∇(∇ · �E)−∇ ∧∇ ∧ �E

= iωµ∇∧ �H

= −ω2�µ �E
� �� �

�
∇2 + ω2�µ

�� �E
�H

�
= 0

Maxwell’s Equations in a Uniform 
Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary 
surfaces

Maxwell’s equations with time dependence ei!t are:

Assume 
)(

)(

),(),,,(

),(),,,(
zti

zti

eyxHtzyxH

eyxEtzyxE
!"

!"

#

#

=

=
!!

!!

! is the propagation constant

Can solve for the fields completely in 
terms of Ez and Hz

z

x

y

40

Then
�
∇2

t +
�
ω2�µ+ γ2

��� �E
�H

�
= 0
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To satisfy boundary conditions: E = 0 on x = 0 and x = a.

=⇒ E = A sinKx, with K = Kn ≡ nπ

a
, n integer

�E = (0, 1, 0)E(x)eiωt−γz where E satisfies

∇2
tE =

d2E

dx2
= −K2E, K2 = ω2�µ+ γ2.

with solution E = A cosKx or A sinKx

Propagation constant is

γ =
�
K2

n − ω2�µ =
nπ

a

�

1−
�

ω

ωc

�2

, ωc =
Kn√
�µ

41

A simple model: “Parallel Plate Waveguide”
Transport between two infinite conducting plates (TE01 mode):

z

x

y

x=0 x=a
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γ =
nπ

a

�

1−
�

ω

ωc

�2

, E = sin
nπx

a
eiωt−γz, ωc =

nπ

a
√
�µ
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Cut-off Frequency, "c

! "<"c gives real solution for #, so attenuation 
only. No wave propagates: cut-off modes.

! ">"c gives purely imaginary solution for #, 
and a wave propagates without attenuation.

! For a given frequency " only a finite number of 
modes can propagate.

For given frequency, convenient to 
choose a s.t. only n=1 mode occurs.

γ = ik, k =
√
�µ

�
ω2 − ω2

c

� 1
2 = ω

√
�µ

�
1− ω2

c

ω2

� 1
2

ω > ωc =
nπ

a
√
�µ

=⇒ n <
aω

π

√
�µ
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k =
√
�µ

�
ω2 − ω2

c

� 1
2 < ω

√
�µ

λ =
2π

k
>

2π

ω
√
�µ

,

k2 = �µ
�
ω2 − ω2

c

�
=⇒ vg =

dω

dk
=

k

ω�µ
<

1
√
�µ

• Wave number

• Wavelength                                    

• Phase velocity                                

• Group velocity
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Phase and Group Velocities in the Simple 
Wave-Guide

vp =
ω

k
>

1
√
�µ

‣ free-space wavelength 

‣ larger than free-space 
velocity

‣ smaller than free-space 
velocity 
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Calculation of Wave Properties
• If           cm, cut-off frequency of lowest order mode is

• At 7 GHz, only the n=1 mode propagates and

k =
√
�µ

�
ω2 − ω2

c

� 1
2 ≈ 2π(72 − 52)

1
2 × 109/3× 108 = 103m−1

λ =
2π

k
≈ 6 cm

vp =
ω

k
= 4.3× 108 ms−1 > c

vg =
k

ω�µ
= 2.1× 108 ms−1 < c

a = 3

fc =
ωc

2π
=

1

2a
√
�µ

≈ 3× 10
8

2× 0.03
≈ 5GHz

�
ωc =

nπ

a
√
�µ

�
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Ex = Ez = 0, Ey = A sin
nπx

a
cos(ωt = kz)

Hx = − k

ωµ
Ey, Hy = 0, Hz = − nπ

aωµ
cos

nπx

a
sin(ωt− kz)

Electric energy: We =
1

4
�

� a

0
| �E|2 dx =

1

8
�A2

a

Magnetic energy: Wm =
1

4
µ

� a

0
| �H|2 dx =

1

8
µA

2
a

��
nπ

aωµ

�2

+

�
k

ωµ

�2
�

= We since k
2 +

n
2π2

a2
= ω2�µ

• Fields (">"c) are:

• Time averaged energies:
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Flow of EM Energy along the Simple 
Wave-Guide

Monday, 28 May 2012

• Poynting vector:

• Time averaged:

• Integrate over x:

• So energy is transported at a rate:

Flow of E/M Energy
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�S = �E ∧ �H =
�
EyHz, 0,−EyHx

�

��S� = 1

2
(0, 0, 1)

kA2

ωµ
sin2

nπx

a

�Sz� =
1

4

kA2

ωµ
a Total e/m energy 

density

 
W =

1

4
�A2a
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• Poynting vector:

• Time averaged:

• Integrate over x:

• So energy is transported at a rate:

Flow of E/M Energy
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Electromagnetic energy is transported down the waveguide 
with the group velocity

�S = �E ∧ �H =
�
EyHz, 0,−EyHx

�

��S� = 1

2
(0, 0, 1)

kA2

ωµ
sin2

nπx

a

�Sz� =
1

4

kA2

ωµ
a Total e/m energy 

density

 
W =

1

4
�A2a
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