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Basic Equations from Vector
Calculus

For a scalar function ¢(x,y,z,?),

oQ 0 8@] Gradient is normal to surfaces

gradient: Vo= (ax’ay 3z =constant

For a vector F = (FI,FZ,F3)

. OF OF, OF
divergence: V- F=—14+—24+—32
8 dx dy 0z
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9y 9z 9z ox ox dy
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Basic Vector Calculus

—

V-FAG=G-VAF—-F-VAG
VAVG=0, V- -VAF=0
VA(VAF)=V(V-F)—-V2F

Stokes’ Theorem Divergence or Gauss’

[[VAF-dS=§F-daF Theorem

s c ijV~ﬁdV=ﬁﬁ'd§
v s

Closed surface S, volume V,
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. (o 7 5 S . .
gr' e n(;ed c “’i£§‘§:_:§§:§:::::§:§§g:lt>-‘ outward pointing normal
oundary —
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Maxwell’s Equations

Relate Electric and Magnetic fields generated by
charge and current distributions.

= electric field

electric displacement V:-D= P
magnetic field
\Y 0

= magnetic flux density

= electric charge density

ST o O =

= current density ot

o = permeability of free space, 4w 10~7 ~ . 8D
€0 = permittivity of free space, 8.854 10712 VANH =)+ —
¢ = speed of light, 2.99792458 103 N

— —

In vacuum: D= GOE, B = uoﬁ, eopoc® =1

What is Electromagnetism?

» The study of Maxwell’s equations, devised in 1863 to
represent the relationships between electric and magnetic
fields in the presence of electric charges and currents,
whether steady or rapidly fluctuating, in a vacuum or in
matter.

» The equations represent one of the most elegant and
concise way to describe the fundamentals of electricity and
magnetism. They pull together in a consistent way earlier
results known from the work of Gauss, Faraday, Ampere,
Biot, Savart and others.

* Remarkably, Maxwell’s equations are perfectly consistent
with the transformations of special relativity.
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_ P .
V-FE= 5 Maxwell’s 1st Equation

Equivalent to Gauss’ Flux Theorem:
- - S -1
v E=" — ///V-EdV://E~ dS:—///pdV:Q
€0 €0 €0
v S v

The flux of electric field out of a closed region is proportional to the total
electric charge Q enclosed within the surface.

A point charge q generates an electric field:

\ f / dx E‘ — q L
N J / 4meq 13
— +
P, _, = q
" - E-dS=
4, ¥\ 4meq
/ sphere sphere

Area integral gives a measure of the net charge enclosed; divergence of

the electric field gives the density of the sources. .
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[v B 0] Maxwell’s 2nd Equation

Force Vectors & Fleld Lines .
Gauss’ law for magnetism:

V- B=0 «— //§~d§:()

The net magnetic flux out of any
closed surface is zero. Surround a
magnetic dipole with a closed surface.
The magnetic flux directed inward
towards the south pole will equal the
flux outward from the north pole.
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If there were a magnetic monopole
source, this would give a non-zero
Distance integral.

=Y,

Gauss’ law for magnetism is then a statement that
There are no magnetic monopoles

= 3 d .
VAL = %;9 Maxwell’s 31 Equation

Equivalent to Faraday’s Law of Induction:

[[ors u-fj 0

<:>%E dl’ = /E.d§=—@

(for a fixed circuit O)

The electromotive force round a circuit

€= §E dlis proportional to the rate of change of flux of
magnetic field ® = ”B dS through the circuit.

Faraday’s Law is the basis for electric generators. It also
forms the basis for inductors and transformers.

10
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- 10E ’ th i
VAB = poj+ — o Maxwell’'s 4" Equation

Originates from Ampeére’s (Circuital) Law : |V A B= uof

$B-dl = [[VAB-dS=p,|[[ ] dS=p,1
C S S

S i Satisfied by the field for a steady line current (Biot-Savart
Ampere | aw, 1820): _
: Bty dinr
4 r

4B For astraightline current B, =

Mol
2nr

1
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Displacement Current

o Apply Ampére to surface 1 (flat disk): line
integral of B =p [

Surface 1 —~c--. .. Surface 2
o Applied to surface 2, line integral is zero
since no current penetrates the deformed
Current / surface.
. 0 a9 _ dE
2 In capacitor, E=—- ,so [ = g A—
---- ' £A dt dt
Closed loop - oF
2 Displacement current density is j, =eoa—
t
- OE
[ V AB = po(j + ja) = 1o + €otto—- 5
12
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Consistent with

Charge conservation:

Total current flowing out of a region
equals the rate of decrease of charge

within the volume.

5453
= Jffein= 3w

Ip

6t0

<:>V]+

Charge conservation is i

Charge Conservation

From Maxwell’s equations:

Take divergence of Ampére’s equation
(incl. displacement current)

1 9E
B=
VA foj + = 2o
10 —
= V-VAB=puV-j+ 2(%(V-E)
7]
— 0=V_" ]+Eo,uoat<p>
dp
— 0=V_" ]+E
mplicit in Maxwell’s Equations
13
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Maxwell’s Equations in Vacuum

In vacuum:

Source-free equations:

D=e«E, B=wH, epoc*=1

V-B=0
. 0B
VAE+— =0
ot
Source equations:
v E=2
€0
-~ 10B -
B—-—— =poJ
VA 2ot Mo

Equivalent integral form (useful for
simple geometries):

J[ 5052 fff o
/B.d§:0

7§E = _7//
%B dl'= uo//]dS—i-det/ E-dS

dg

Cl)l

14
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The Betatron

Particles accelerated by the rotational Magnetic
electric field generated by a time-varying

magnetic field oL d o
?{E» dl = f&//B- ds

Example: Calculate E from B

. Uﬁdf:_i//é.ng
de

Generated
d . _ 9% E-field
r<r, 2nrE,=-—mnr’B,sinot=-nr'Bwcoswt ’ 2rrle =~
dt Yoroid
- £ = 1 B o cos For circular motion at a constant radius: Core
. 06— 570
_[Bysinax r<r, _mv2:evB _. p__»p ‘
z 0 r> VO d ; ; r er Magnets
r>r, 2rnrE,=——mnr; B,sinwt =—nr, B,wcoswt
’ a0 o _ Opppy-_ L _ E_ 1 d0
0B > T T T 2 dt
Alsofrom YV A F =—— N E =—wr°B°coswt
ot 0 2r
— B(r,t) 2//Bds
1 aE h d \_ 2 e Y, Copper Coils Target
VAB= 1, ] + 9% then gives current density necessary

2
dt ®© sustain the fields B-field on orbit needs to be one half the average B over the circle. This imposes a limit on the

15 energy that can be achieved. Nevertheless the constant radius principle is attractive for high
energy circular accelerators.

16
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Boundary Conditions |

Maxwell’s equations involving divergence can be
integrated over a small “pillbox” across the
boundary surface

V-B=0 =>///v Bdv = //é-d§:o

- )AS—O
= [ﬁ-érjzo

D=p é///f.ﬁdv_/ 5-d§:///pdv

— (ﬁ +—ﬁ-5‘)AS:0AS

_q 4
== [ﬁ . D} = g| where o is the surface charge density

17

Boundary Conditions Il

Maxwell’s equations involving curl can be integrated over a closed
contour close to, and straddling, the boundary surface

VAE f—=>//VAE ds = %E di'= ,7//3 ds

=><E )Al—>0 C

= aF
— [ﬁ/\E] —0

Al

VAﬁ:j‘Jraa—? :>//V/\H ds = fH dl'= // dS+—//D ds
:>(HH+ ”)Al—>KAl

—

+ S
== [fi NH } = K | where K is the surface current density

Monday, 28 May 2012

Lorentz Force Law

* Thought of as a supplement to Maxwell's equations but actually
implicit in relativistic formulation, gives force on a charged particle
moving in an electromagnetic field:

f= q(E +V A E)

» For continuous distributions, use force density
J_éd = pE +jA B

» Relativistic equation of motion

dp - f = 1dE djp
— 4-vector form: F'= — —_— = -, =
vector form = = 7( - ,f) v(c dt’dt)

— 3-vector component: Energy component:

d N .~ dE 2 dy
@—t(movv):fzq(E—i—v/\Bﬂ [v-sz:m o j
& Scngg:e&Technology

Faciliti
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Motion of Charged Particles in Constant
Magnetic Fields

1. From energy equation, y is constant
No acceleration with a magnetic field

2. From momentum equation,

d d 5 | Lo
- —(y0) =0=~—(B-¥) = 7 is constant
dt

[|17| constant and || constantJ

o]
|
~~~
S
|
|
b}

= |U.] also constant

20
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Motion in Constant Magnetic Field

Vol Magnetic
{ field
d - - = : /74‘ \\/'
m (‘III()’}l‘) =quvN\B o/ X
dt P il
dv q - = s )
— = ——UAB b=t
dt mo?y
v? q
= = = v, B
P mo~y
. . . . oyv.L
== circular motion with radius p = ———
qB
vy qB qB

at an angular frequency w = =
p mpy m

Constant magnetic field gives

uniform spiral about B with -
constant energy. q q
Magnetic Rigidity

Bp= T _ P

21
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Relativistic Transformations of E and B

* According to observer O in frame F, particle has velocity v, fields are E and

B and Lorentz force is f= q(ﬁ + 7 x B')
* InFrame F, particle is at rest and force is fl=qE
* Assume measurements give same charge and force, so
¢=q and E' =E+vxB
q T _

* Point charge ¢ at rest in F: E = —, B=0
4eg 13

* See acurrentin F’, giving a field B - _HeqvxT
47 7’3 C

L1 .
»  Suggests B’:B——217><E
c

& Science & Technology

@ Facilities Council
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Motion in Constant Electric Field

d R - — N —. d R —
a(mofyv) =f= q(E +TA B) i a(mo'yv) =qF
Solution is VU = ;—Et

0

. de 02
It E = (E,0,0), d—: @ :>z:zo+n;g

Et\?
+<q—> 1}
moc
q

1 /qFE
~x9+ = <—) t2 for qFE < mgye
2 mo

Energy gain is ‘mocz('y —1) =qE(z — zo) ‘

Constant E-field gives uniform acceleration in straight line
22
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Relativistic Transformations of E and B

* According to observer O in frame F, particle has velocity v, fields are E and

B and Lorentz force is f= q(E 7 x é)
. = = TSN . " e PEWa vl =7
(—» — — — — N
/ _ g / _
B = y(BL+9xB), ‘= E
. — — 17><E — —
/ _ _
B, = v|BLi——%|, B = 5

. Suggests B =B —

& Science & Technology
@ Facilities Council
23
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Potentials

* Magnetic vector potential
V-B=0 <« 34 suchthat B=VAA

* Electric scalar potential

OB 0A
VAE=-"2 <V E —
ot A ( + )1‘) 0

A
< 3¢ such that E = Vo — {j)_t

» Lorentz gauge ¢ — o+ f(t), A— A+ Vy
+V-A=0

Use freedom to set

L
ot

24

Electromagnetic 4-Vectors

* Lorentz gauge
1 0¢ 10 1, <
ErTA =(za-‘v)‘(z"”"‘)=“‘"

4-gradient V4 4-potential ®
* Current 4-vector
3D: 7 = pv
AD:  J = poV = poy(c,¥) = (ep,j), where p= pyy
» Continuity equation

_ (19 N/ 2 _
V4-J—(( pre V) ((,/).‘/)—0t+v 7=0

25
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Relativistic Transformation of Potentials

+ 4-potential vector: @ — (1@, /Y)
(¢

* Lorentz transformation

Ly v~ =200 1,
c ‘/ v c c'
AJ. . —_ Yy 0 0 A:L‘
= c
A'y 0 0 1 0 A,y
Al 0 0 0 A.
. ™
== ¢ =y (¢ - vAz)
r_ d’ ’ ’
A, =y A — A =A,,A,=A
J 26
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Electromagnetic Energy

» Rate of doing work on unit volume of a system is
i f=—0-(pE+iNB)=—pi- E=j-E

» Substitute for jfrom Maxwell’s equations and re-arrange:

. 9D
V.- ENHB-H-VAE+E.- 22

~ ot

0B . 0 L
_v.5.08.92 .8 oD where S=FEAH

ot ot

+ For linear, non-dispersive media where B=uH,D=¢E r
+

B. ﬁ) Poynting vector

27
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. 1o}
ot

- 3 Energy Conservation

» Integrated over a volume, this represents an energy

conservation law:

— the rate of doing work on a system equals the rate of
increase of stored electromagnetic energy+ rate of energy

flow across boundary.

dw o o~ o
—_— = — E-D+B-
dt — dt /// /+

electric + magnetic
energy densities of
the fields

ﬁ)dm//mﬁ.dg

\

Poynting vector gives
flux of e/m energy
across boundaries

28

Review of Waves

2 2
+ 1D wave equation is gg = 12 882 with general
solution x t

u(z,t) = f(vt — z) + g(vt + z)
» Simple plane wave: —_— —

—_

ID: sin(w?—kx) 3D: sin(a)t —k- 55)

Wavelength, 2.
—aveengh, k., Crest

) 2m = I N
Wavelength is A = — £ g "‘"“’"“‘f"’ "

Trough

. w Direction of motion
Frequency is v = —

29
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Phase and group velocities

sinlet-bn)
4

wt-ke)
-~
B

>

/o Time t+At

&

Plane wave sin(wt — kz) has constant
phase wt — kx = {7 at peaks

wAt — kAxz =0
G-
TAL T &

J.A(k)ei[a)(k)tka]dk

Superposition of plane waves. While
shape is relatively undistorted, pulse
travels with the Group Velocity

_ dw
~dk

30

Monday, 28 May 2012

Wave Packet Structure

1 r" ’.]‘
v*-».l:-w-.,a:j“‘ﬂ‘ ol \|\ \‘l i nM \“Mwﬂh‘\~'»u‘wl|“|‘
LR LEMEE AL

* Phase velocities of individual plane waves making
up the wave packet are different,

* The wave packet will then disperse with time

31
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| Electromagnetic waves

equations predict the existence of electromagnetic waves, later
d by Hertz.

es, No currents: ., 9D . OB
_()B. ot ot
VA(VAE):_VAW V-D = 0 V-B =0
0 —
= - E (V A B ) 3D wave equation:
__Naz_D:_'“(@ Vzﬁ—@+@+@— e@
o2 T o2 T a2 T oy T a2 Mo
\\ J
s P =
v A (v A E.) _ V(V . E.) B VZE Similarly for H.
Electromagnetic waves travelling with
— _V2F L
L = V°E speed ey

o2

Nature of Electromagnetic Waves

* Ageneral plane wave with angular frequency w travelling in the
direction of the wave vector k has the form

(E' _ E"Oei(wt—l_c'~a'c‘), B— goei(wt—ﬁ.f) )

+ Phase wt — k- ¥ = 27X number of waves and so is a Lorentz
invariant.

* Apply Maxwell’'s equations:

+ Waves are transverse to the direction of propagation; £, 5 and k are
mutually perpendicular

33
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Plane Electromagnetic Wave

Electromagnetic waves transport
energy through empty space, stored
in the propagating electric and
magnetic fields.

pw
Electric
field variation
Magnetic field [
variation is
perpendicular A |
to electric field. | l l J t {
| "
A
! A single-frequency electromagnetic
/ wave exhibits a sinusoidal variation
P of electric and magnetic fields in
_ space.

34
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-~ 10E - S W
ANB=—5— < kANB=—-—<5F
v 2 ot c2

Combined with kA E =wB —

. . . w
[=> speed of electromagnetic waves in vacuum is = c J

Reminder: The fact that wt — E - T isan
Wavelength A = 2n invariant tells us that

= @ =
C
is a Lorentz 4-vector, the 4-Frequency vector.

w
Frequency v = o Deduce frequency transforms as
cC—v

c+wv

W =yw-7k=w

35
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Waves in a Conducting Medium

(E: E’Oei(wt—ﬁ-i), B— B’Oei(wt—ﬁ-i) )

* (Ohm’s Law) For a medium of conductivity o, ; = gE

+ Modified Maxwell: VA H =7+ 68@? =oFE + e%f

—z'E/\ﬁ = 0E+iweﬁ

.putD:i / AN

conduction displacement
current current

Dissipation
factor

Copper: 0=58x10",e=¢, = D=10"
Teflon: 0=3x10%,e=2.1, = D=257x10"

36
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Charge Density in a Conducting Material

+ Inside a conductor (Ohm's law) = o F

» Continuity equation is

Op - dp =
a%—V-j—O — at+aV E =
dp o
< E‘F* =
« Solution is (p:po e_at/e)

» Charge density decays exponentially with time. For a very
good conductor, charge flows instantly to the surface to
form a surface current density and (for time varying fields)
a surface current. Inside a perfect conductor:

(0 »0) E=H=0 39

Attenuation in a Good Conductor

—ik NH = 0F +iweE < kAH =iocE —wekE = (ic —we)E

o 1

. 9B L B
Combine with VAE = ~ o = ENE =wuH

= EA(ENE)=wpk AH =wu(ioc — we)E

= (k- E)k — k*E = wulioc — we)E

= (k2:w,u(—io+we))since k-E=0

For a good conductor, D >> 1, 0 > we, k? ~ —iwpuc

1 2
— ke~ J2H7 (1 4y = Z(1 — i) where § = ]/ —— is the skin-depth
2 ) wpo

(Wave—form is: ei(wt—kw) _ ei(wt—(l—i)w/é) _ e—z/(iei(wt—x/é))
37
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Maxwell’s Equations in a Uniform
Perfectly Conducting Guide

Hollow metallic cylinder with perfectly conducting boundary

surfaces
X .
. Maxwell’s equations with time dependence €' are:

L 3 . 25 LB - o
VAEzi%lf?:iin V2E =V(V-E)-VAVAE

¥ = = iwpV A H

. 9D 4 .

VAH= = iweF = —w?epk

Assume E(x, y,z,t) = E(x, y)e™ 7
3 7 (iwt-yz) _
H(x,y,2,0) = H(x,y)e™"™" [Then [Vtz-i-(wze/t-i-’yz)] { f‘j }:(J

vy is the propagation constant

Can solve for the fields completely in

terms of E, and H, 40
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A simple model: “Parallel Plate Waveguide”

Transport between two infinite conducting plates (TE,, mode):

d’FE
2 2
Vi;E = a2 =—-K°F,

To satisfy boundary conditions:

Propagation constant is

= /K2 — w2 _nr 1-— Rl ’ w _ K
F)/_ n /J'_ a wC ) c_\/a

E = (0,1,0)E(z)e*=7* where E satisfies

K? = wlep +~%

with solution EF = Acos Kz or

EF=0onz=0and z=a.

— E=AsinKz, with@ = Kp = -~ n integer
a

41

Cut-off Frequency, o,

2
nm w S 07
v=—4/1— (—) , E = sin elwt 'yz7 .

We

o<, gives real solution for v, so attenuation
only. No wave propagates: cut-off modes.

kfy

o>, gives purely imaginary solution for v,

and a wave propagates without attenuation. //' / i
1 ] / / / / /
1 2\ 2 | j I/' / / '//
vy =ik, k= eu(w®—w?)? =wy/en (1 - %) o [ / ‘i B A0
J if

For a given frequency o only a finite number of

modes can propagate.

nm

aw
W > we = = n< —/eu
s

a./en

For given frequency, convenient to
choose a s.t. only n=1 mode occurs.

42
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Phase and Group Velocities in the Simple

Wave-Guide
k= \/en(w?® — w?)

Wave number

Wavelength A=

w 1
Phase velocity v = = > NG >

* Group velocity

4

< w+\/eu
free-space wavelength

larger than free-space
velocity

T wen S e

smaller than free-space
velocity

Monday, 28 May 2012

Calculation of Wave Properties

* If a = 3 cm, cut-off frequency of lowest order mode is

mr)

a/en

we 1 3x10°
o 2ay/en 2% 0.03

* At 7 GHz, only the n=1 mode propagates and

fe= ~ 5 GHz <wc =

( 1
k= emi(w? — w?)? ~2m(72 — 5%)2 x 10°/3 x 10° = 103m™"
2
/\:%z6cm
vp:%=43x108ms*1>c
k 8 —1
vg:w—w:lelO ms -~ <c
|\
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Flow of EM Energy along the Simple
Wave-Guide
« Fields (o>wm,) are:

E,=FE,=0, E,=Asin e cos(wt = kz)
a

k
H,=-—E, H,=0, H,= —ﬂcos@sm(wt—kz)
wi awp a

. . . 2 2 .
* Time averaged energies: (sin”wt) = (cos” wt) = 3’ (sinwt coswt) =0

1 - 1
Electric energy: W, = ZE/ |E|? dz = §6A2a
0

1 R 1 nr \2 k2
Magnetic energy: Wy = Z,u/ |H|? dz = gqua { (7) + (7> }
o awp Wit

2,2

=W, since k2 + =w?eu

a?
46

Flow of E/M Energy

Poynting vector:  S=EnAH = (E,H.,0,-E,H,)

. - kA2 nwx
+ Time averaged: (S)= (0 0, 1)_u sin? —
1 kA2
* Integrate overx: (S.)=-—a Total e/m energy
4 wp density
. 1 2
» So energy is transported at a rate: W= ed%a

(S:) _ k
We-I-Wm_wep.

47
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Flow of E/M Energy

—

Poynting vector: S =EAH = (E,H.,0,—E,H,)

2
- Time averaged:  (5) = (00 1) ’1 i

a
1 kA2
* Integrate overx. (S.)=-—a Total e/m energy
4 wp density
» So energy is transported at a rate: =3¢

() _ k-

We + W, _wepzvg

Electromagnetic energy is transported down the waveguide

with the group velocity
47
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