

Microwave Discharge Ion Sources

Luigi Celona

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Via S. Sofia 64 – 95123 Catania **Italy**

- *ADS for nuclear waste transmutation (and Energy production)*
- *Radioactive ion beams*
- *Intense neutron spallation sources*
- *Radiation processing*
- *Neutrino factory*
- *Power range: 100 KW10 MW*
- *Energy range: 100 MeV* \div *2 GeV*
- *Average current: 100* μ *A ÷30 mA*
- *Pulsed or CW*

High reliability and high parameters' reproducibility is requested (i.e. operator-indipendent)

HYPOTHESIS: ABSENCE OF MAGENTIC FIELD, PLANE AND MONOCROMATIC WAVE

Upper limit to density: $n < n_c$

The introduction of a magnetic field opens different coupling mechanism:

• *ELECTRON CYCLOTRON RESONANCE (ECR) (see T. Thuiller lectures)*

e met wave strong *m* $B_{ECR} = \frac{m_e \omega}{m_e}$ RHCP wave strongly $_{ECR}$ \qquad \qquad B-min magnetic configuration – ECR heating occurs at $B_{ECR} = \frac{m_e \omega}{2}$ RHCP wave strongly coupled **OFF RESONANCE HEATING** K. Golovanivsky **ECRIS plasmas: stochastic heating or Langmuir caviton collapses"** Proc. 11th ECRIS Workshop (1993), KVI, 996 Energy absorbed by off resonance heating process

Pioneeristic work

Later on, Okada and others in Japan and elsewhere produced tens of mA of B⁺, As⁺, P⁺ and other monocharged ions, but Sakudo is recognized to be the pioneer.

First Ion Implanter

Breakthrough simple design

All successful sources are based on it

Los Alamos source for LEDA

Los Alamos source for LEDA

LEDA INJECTOR

Plunging Beam Stop

CRITS RFQ

Beam Diagnostics Box-

2.45 GHz Magnetron $-$

• Beam currents measured at DC1, DC2, and in the RFQ entrance collimator for 6.7 MeV RFQ.

Cryogenic Vacuum Pumps

EMU

- Beam focusing accomplished with LEBT solenoid magnets S1 and S2.
- Beam centroid controlled with steering magnets SM1 and SM2.

SILHI source and LEBT

Since 1996, SILHI produces H+ beams with good characteristics:

H+ Intensity > 100 mA at 95 keV H+ fraction > 80 % Beam noise < 2% 95 % < Reliability < 99.9 % Emittance < 0.2 π mm.mrad CW or pulsed mode

(direct - reflected)

In CW mode, the source routinely produces **130 mA** total (> 80% H⁺) at 95keV

Space charge compensation with ⁸⁴Kr

Emittance plot (99%) without injecting gas in the beam line: Emittance plot (99%) injecting 84Kr in the beam line: $p=1.8\cdot 10^{-5}$ T $\Rightarrow \underline{\mathcal{E}}_{RMS}=0.335$ π mm mrad $p=3.0\cdot 10^{-5}$ T $\Rightarrow \underline{\mathcal{E}}_{RMS}=0.116 \pi$ mm mrad

Space charge compensation with Ar

mrad

 \exists

 25

 20

15

 1^C

145

140

135

130

Emittance (r, r') RMS 1.0% = 0.124 pi.mm.mrad

125

Emittance plot (99%) without injecting gas in the beam line: $p_1 = 1.8 \cdot 10^{-5}$ T, $p_2 = 1.2 \cdot 10^{-5}$ T $\Rightarrow \underline{\mathcal{E}}_{RMS} = 0.291 \pi$ mm mrad

Emittance plot (99%) injecting Ar in the beam line: $p_1 = 4.5 \cdot 10^{-5}$ T, $p_2 = 4.4 \cdot 10^{-5}$ T \Rightarrow $\frac{\mathcal{E}_{RMS}}{=}$ 0.124 π mm mrad

120

115

110

105

alpha rms

beta

100

95

 $rms = 24.28 mm/mrad$

 $= 15.57$

gamma $rms = 10.02$ mrad/mm

mm

Space charge compensation with N2

Emittance plot (99%) without injecting gas in the beam line: p_1 =1.6·10⁻⁵ T, p_2 = 1.2·10⁻⁵ T \Rightarrow $\underline{\mathcal{E}}_{\mathsf{RMS}}$ =0.386 π mm mrad

Emittance plot injecting N2 in the beam line: p_1 =4.5·10⁻⁵ T, p_2 = 4.5·10⁻⁵ T \Rightarrow $\underline{\mathcal{E}}_{\mathsf{RMS}}$ =0.13 π mm mrad

Space charge compensation with H2

Emittance plot (99%) without injecting gas in the beam line: $p_1 = 1.6 \cdot 10^{-5}$ T, $p_2 = 1.2 \cdot 10^{-5}$ T $\Rightarrow \underline{\mathcal{E}}_{RMS} = 0.292 \pi$ mm mrad

Emittance plot (99%) injecting H2 in the beam line: $p_1 = 5.10^{-5}$ T, $p_2 = 4.9.10^{-5}$ T \Rightarrow $\frac{E_{RMS} = 0.198 \pi \text{ mm mrad}}{E_{RMS} = 0.198 \pi \text{ mm mrad}}$

Space charge compensation with H² , N² , Ar, Kr

• *In all the cases considered, a decrease of beam emittance has been observed with the increase of beam line pressure.*

• *Using ⁸⁴Kr gas addition a decrease of a factor three in beam emittance has been achieved losing less than 5% of the beam current with a small increase of pressure (from 1.8E-5 Torr to 2.4E-5 Torr).*

P—Y. Beaubais, R. Gobin, R. Ferdinand, L.Celona, G. Ciavola, S. Gammino,J. Sherman, Rev.Sci.Instr. 71(3),(2000), 1413

Sources) requirements

Beam Energy: 80 keV

Beam emittance: $\varepsilon_{RMS} \leq 0.2 \pi$ mm mrad *Reliability: close to 100%*

TRIPS (TRasco Intense Proton Source)

Proton beam current: 35 mA dc Beam Energy: 80 keV Beam emittance: $\mathcal{E}_{RMS} \leq 0.2 \pi$ mm mrad *Reliability: close to 100%*

Based on CRNL-LANL-CEA design **MANY INNOVATIONS**

TRIPS operating parameters

TRIPS (TRasco Intense Proton Source)

Extraction electrodes

TRIPS mounting procedure: from the

grounded flange to the 100 kV flange.

TRIPS experimental layout

A layout of the whole set-up at INFN-LNS:

1- Demineralizer; 2- 120 kV insulating transformer; 3- 19" Rack for the power supplies and for the remote control system; 4- Magnetron and circulator; 5- Directional coupler; 6 – Automatic Tuning Unit; 7- Gas Box; 8- DCCT 1;

9- Solenoid; 10- Turbomolecular pump; 11- DCCT 2; 12- Quartz tube; 13- Beam stop.

Microwave injection and beam extraction

optimisation

2b^s

2

a2

 $2b_s$

 Z_0 > Z_1 > Z_2

 E_{s1} ^{E_{s2}}

WR284

1

 $\overline{a_{1}}$

2b^s

3

2b^s

2b¹

4

Microwave Injection

Use of a step binomial $\begin{array}{ccc} \begin{array}{ccc} \end{array} & \begin{array}{ccc} \$ matching transformer with a field enhancement factor $(E_{s4}/E_0) \approx 1.95$ (a₂=0.0126 m)

Beam extraction

The extraction process has been deeply studied with the aim to increase the source reliability and to keep emittance low. The used codes were AXCEL-INP and IGUN.

 $> Z₅$

Es4

Es3

PLASMA IMPEDANCE

L.Celona, G. Ciavola, S. Gammino, R. Gobin, R. Ferdinand, Rev.Sci.Instr. 71(2),(2000), 771

Optimum magnetic field profile

INFN

ituto Nazionale

CERN Accelerator School and Slovak University of Technology, Senec, June 2012

LEBT with Saclay EMU

di Fisica Nucleare

Emittance measurements at nominal current tuto Nazionale li Fisica Nuclear

 20.0°

The measured value is slightly above the theoretical value and in good agreement with the AXCEL calculation.

L. Celona, Microwave Discharge Ion Sources

TRIPS reliability test: 35 mA @ 80 kV

CERN Accelerator School and Slovak University of Technology, Senec, June 2012

TRIPS performance vs. forward power

Operating voltage = 80 kV Mass flow= 0.6 sccm Optimized magnetic field profile Extraction aperture = 6 mm

Fisica Nucle

Electron donor= BN disks **Current density up to 210 mA/cm²** (close to J_{child})

TRIPS performance vs. mass flow @ 450 W **INFN** di Fisica Nucleare

Typical densities and temperatures of MDIS plasmas

li Ficica Nucles

TRIPS vs. VIS

•New extraction system and accelerator column simplified to reduce the dimensions.

•New ionisation chamber.

tuto Nazional Fisica Nucle

•Insulation of coils, microwave and gas system to eliminate the HV-platform (implies a further simplification of the electronics involved in the control of the source because all the instrumentation will be placed at ground potential).

NEW MAGNETIC SYSTEM

- Based on three rings of NdFeB permanent magnets
- The ARMCO iron components lower the off axis magnetic stray field values, detrimentals for the reliability, by keeping high the field inside the plasma chamber
- Very good matching between the measurements and the numerical simulation carried out with the OPERA code

ION EXTRACTION SYSTEM

YOU ARE NOT OBLIGED TO DESIGN COMPLEX SYSTEM

VIS DESCRIPTION

VIS BEAM LINE DESCRIPTION

MICROWAVE LINE 1/3

MW LINE 2/3: MATCHING TRANSFORMER

MW LINE 3/3 WAVEGUIDE DC-BREAK

DESCRIPTION

It consists of 31 aluminum sections of a WR340 waveguide insulated one each other by means of 30 fiberglass disks 0.5 mm thick in the metal separation gap

PERFORMANCES

- Electrical Insulation up to 100 kV
- Transmission coefficient -1.4 dB @ 2.45 GHz
- Low radiated electromagnetic field

ION EXTRACTION SYSTEM

The extraction geometry will employ only four electrodes. A plasma electrode at 80 kV voltage, two water-cooled grounded electrodes screening electrode and a 3.5 kV negatively biased electrode inserted between the two grounded electrodes

in order to avoid secondary electrons due to residual gas ionisation going up to the extraction area.

extracted beam

 -2

TRIPS Five-electrodes topology

• wide range of operations (10-60)

• on-line optimisation of the

VIS Four-electrodes topology optimized for a 40 mA beam (90% proton, 10% H_2^+)

The rms normalized emittance calculated with Axcel code, 11 cm far from the extraction electrode is 0.04 π mm mrad.

109 mA à 85 kV (75% H⁺) with extraction hole 9 mm

The PM source of Saclay produced 85 mA total beam at 80 kV,for 4 days with no beam off

Passive method to increase and to improve the intensity of the ion beam

BN disk and wall coating effects

Configuration with BN disk and alumina

Configuration with BN disk and no alumina

 AL_2O_3 •Inner diameter: 79 mm. •Outer diameter: 89.5 mm. •Length: 95 mm.

BN •Inner diameter: 7.8 mm. •Outer diameter: 89.5 mm.

thick BN plates are located at two extremities of the plasma chamber. Al₂O₃ tube is nested within the plasma chamber, it covers the entire walls from one side to other

Figures show the trends of the extracted current and the proton fraction as a function of microwave powers at 2.10^{-5} mbar (on the left) and at $2.5.10^{-5}$ mbar (on the right). The improvement of the performance with the use of the alumina tube and of the disk of BN disk can be explained by means of two different theories. For the first one the BN and the alumina are electron donors that influence the plasma essentially by emitting cold electrons. The second one explains this phenomenon by introducing the Simon currents within the plasma.

Well established items

- **Larger current, larger brightness, better reliability seem to be realistically achievable in few years' term**
- **There are 'billion \$' projects leading the run (ESS and IFMIF for p,d as it is SNS for H-)**
- •**Study of pulsed operation (2 ms-20 Hz) needs more insights**
- **Looking for short pulse rise time (100 ns)**
- **Beam dynamics vs. plasma simulations**
- **LEBT optimization**
- **Plasma chamber dimensions are not a free parameter**
- **Electron donors may help**
- **Microwave coupling may give some positive surprise**
- **Magnetic field probably not…**
- •**Space charge will be always a nightmare!**