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Ingredients of Electron Cyclotron Resonance Ion Source
• An ECR ion source requires:

• A secondary vacuum level to allow multicharged ion production
• A RF injection in a metallic cavity (usually multimode)
• A sophisticated magnetic Field structure that enables to:

• Transfer RF power to electrons through the ECR mechanism
• Confine enough the electrons to ionize atoms
• Confine enough ions to allow multi-ionization ions
• Generate a stable CW plasma

• An atom injection system (gas or condensables) to sustain the plasma density
• An extraction system to accelerate ions from the plasma

• In the following, we will try to detail these points to provide an overview of ECR 
ion sources
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Ion creation through Electron Impact Ionization (in gas or plasma)

• Ions are produced through a direct collision between an atom
and a free energetic electron
• →
• Threshold kinetic energy 	of the impinging electron is the binding

energy 	of the shell electron: 

• Optimum cross-section
for ~2 3

• Higher energy electron
can contribute significantly

• Double charge electron
impact ionization may also
occur…
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Ion creation through Electron Impact Ionization (in gas or plasma)

• Electron impact ionization cross section can be approximated
by the semi-empirical Lotz Formula: 

• → ~1.4 10
	

, E electron kin. energy

• High charge state production requires hot electrons

• → ~ => the higher the charge state,

the lower the probability of ionization
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In 	nth Ionization Potential

Z In (eV) 	

1+ 7.2 ~2.410-16

22+ 159 ~4.910-19

54+ 939 ~1.410-20

72+ 3999 ~7.810-22

82+ 90526 ~1.510-24

Example for Bismuth

Bi
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Ion loss through Charge-Exchange (in gas or plasma)

• The main process to reduce an ion charge state is through
atom-ion collision

• → (+radiative transitions)

• Long distance interaction: the electric field of the ion sucks up an electron from
the atom electron cloud

• Any ion surface grazing signs the death warrant of a high charge Ion

• semi-empirical formula :

• → 1 ~1.43 10 . . 	 (A. Müller, 1977)

• 1st ionization potential in eV, ion charge state
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Z 1+ 22+ 54+ 72+ 82+

σ 	 cm2 1.510-15 5.610-14 1.610-13 2.210-13 2.610-13

Example : 
Bismuth with O2

Summary of the main microscopic processes occuring in an ECR Ion Source
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Zero Dimension Modelization
• The ion charge state distribution in an ECRIS can be reproduced

with a 0 Dimension model including a set of balance equations:

→ → → →

• ion density with charge state i

• , cross section of microscopic process
• Electron impact or charge exchange here

• is the confinement time of ion in the plasma

• 		represents the current intensity for species i

• Free Parameters:  ne, f(ve), 

• Model can be used to investigate ion source physics
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Elastic Collision in an ECRIS plasma
• The electromagnetic interaction between charged particles only occurs in 

distances < Debye Length (mm to µm).
• The  e-e and e-ion electromagnetic interaction in the Debye sphere (radius~ 

	) generate a net force acting on individual charged particles that 
continuously, and little by little, change their velocity direction

• The Elastic interaction is modelized by the mean time to deviate the initial 
trajectory by 90°. They are known as the Spitzer formulas:

• Electron/Electron collision : 

• Electron-Ion collision :

• Ion/Ion Collision :

• T in eV, n in cm-3, z = ion charge state, ln(Λ)~10
• One should note that these perpetual interaction tends to randomize the 

velocity direction of a particle inside the plasma
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Motion of a charged particle in a constant magnetic field

• Individual motion of a charged particle in a magnetic field ruled
by:

•

• Velocity is decomposed as ∥	 	with 	. 0 and ∥	 ∥

• We define the space vectors ∥	
	 , 	

	 and 	 ∥ 	

• General solution for the velocity is:

•
∥

sin . cos .

• is the cyclotronic frequency

• is the Larmor radius (constant)

• The particle trajectory is an helix with radius and pitch ∥
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The Electron Cyclotron Resonance (1/3)
• Motion of an electron in a constant Magnetic Field B and a 

perpendicular time varying Electric Field Ex(t)
• Assume ; cos
• Assume initial particle velocity 0, and with 0

• Assume (ECR resonance condition)

• Let’s solve !   (1)

• Complex notation: 

• We look for velocity solution of type: 

0
• Let’s substitute in (1):

•
0

	
0

0
0
1

0
0

→
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The Electron Cyclotron Resonance (2/3)

• (*)
	 1

	 2
; 
										 2 →   

2 →

• 2 & 2 	in	 1 → 2

• Assume that 0 → →

• Substitute: 

• So 

• And finally: 

cos sin sin

• The electron gains energy with time & describes a spiral
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The Electron Cyclotron Resonance (3/3)
• ECR heating in a general transverse Electric Field (with )

• Linear polarized static Electric field:
• for cos 	:

• cos sin sin => ECR HEATING

• Now for sin 	, applying the same reasoning, one can find the same result (!):

• cos sin sin => ECR HEATING

• Static rotating electric field:
• Clockwise rotation :
• The electric field turns in the opposite direction of the electron

• cos sin

• 0 => NO ECR HEATING
• Counter-Clockwise rotation case:
• Electron and electric field turn in the same direction

• cos sin

• cos sin sin => ECR HEATING
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ECR Stochastic Heating (1/5)
• In the former slides, we studied the ECR heating starting from an electron

at rest (v0=0)
• In reality, the electron always has an initial kinetic energy v0≠0
• Let’s study the influence of v0 on the ECR heating, introducing the Phase 

shift between and :

• 0 ,

• When , 0 ∥ , acceleration is
maximum:  the ideal case studied previously
→ electron gains energy

• When 0, acceleration is now in the opposite
direction, the electron is decelerated
→ electron loses energy!

• So, how does it work???
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ECR Stochastic Heating (2/5)

• Let’s solve again (1): , still using complex

notations, but with the initial condition v0≠0
•

• 0 cos sin

• so	Re b 0 Re i sin and Re 0 Re cos

• and still cos

• Same solving, but now: → 0

• The velocity expression is now :

•

cos sin sin

cos sin
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Former solution (v0=0)

Initial condition (v0≠0)

Electron Cyclotron Resonance Mechanism
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ECR Stochastic Heating (3/5)
• Finally, the general solution for a counter-clockwise Electric Field 

can be calculated to be :

•

cos sin sin

cos sin

• Expression of the Kinetic Energy of the electron as a function of 
time and phase :

• , sin 2 sin

sin

1
2
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Increases with time (~

Phase term, 
may be <0 (~

Constant term
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ECR Stochastic Heating (4/5)
• electron Kinetic energy plot as a function of time 		and phase :
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ECR Stochastic Heating (5/5)
• If we assume that a population of electron with velocity

is randomly distributed in its velocity phase space (random
phase with the wave), the mean kinetic energy
evolution of the population is:

• ,

• And we find… 0

• That’s the ECR stochastic Heating!
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ECR Heating in a Magnetic Gradient
• In ECR Ion Sources, the ECR zone is usually reduced to a surface, 

inside a volume, where B is such that

• When electrons pass through the ECR surface they are slightly accelerated
(in mean) and may gain ~1-50  eV of kinetic energy

• The parallel velocity ∥ is unchanged, while increases
• The ECR zone thickness is correlated to the local magnetic field slope
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Properties of particle motion in a magnetic field (1/2)

• ∥	 	with 	. 0

• ∥ → ∥ ∥

• The kinetic energy of a charged particle is constant in a pure 
magnetic field

• The particle roughly follows the local magnetic field line, even if 
the field line is bended
• Provided the magnetic field change per cyclotronic turn to be small

( / ≪ 1

19

Magnetic Field line 
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A too large 	 /
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Properties of particle motion in a magnetic field (2/2)
• The Magnetic Moment of a charged particle in a slowly varying magnetic field is

an adiabatic constant of the movement

2
~

• Demonstration:
• We assume a local axi-symetric magnetic field which converges toward the z axis with

, ~
• From 0	 → 		 0 (cylindrical coordinate)

• → →

• The force acting on a particle rotating around z axis with a Larmor radius is:

• ∥ → → 	

•

• The elementary work associated with is ∥

• The kinetic energy constancy implies:  ∥ → ∥

• →

20
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The Magnetic Mirror Effect
• When a charged particle propagates along
	toward a higher magnetic field region, it may

be reflected back

• ∥ ∥

• ~

• ∥

• When increases, then the velocity is adiabatically
transferred from ∥ to 

• The particle is stopped at 	
where ∥ 0 	and 

•

• Any perturbation induced by the surrounding
particles on the stopped particle will make it go 
back to where it came from
=> Mirror Effect
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Axial mirror done with a set of 2 coils

http://www.astronomes.com
/

Solar wind
reflection by the 

Earth
magnetosphere
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Corrolary of Magnetic Mirroring: The Loss Cone
• The pitch angle 

• ∥	 	
• ∥	 cos
• 	 sin

• ∥

• The condition to trap a particle in a magnetic mirror from with a 
maximum peak at 	can be expressed as a function of the mirror ratio :

• 	 sin

	

• Demonstration:

• cos

• → 1

• Magnetic confinement is not perfect, and it is used to EXTRACT ION BEAMS!
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ECR Magnetic confinement: Minimum |B| structure

• ECR ion sources features a sophisticated magnetic field
structure to optimize charged particle trapping
• Superimposition of axial coils and  hexapole coils

• The ECR surface (|B|=BECR) is closed
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Axial Magnetic Confinement
• The axial magnetic confinement in a 

multicharged ECRIS is usually done
with a set of 2 or 3 axial coils.
• Either room temperature coils + iron to 

boost the magnetic field

• Or superconducting coils

• In the case of 3 coils, the current
intensity in the middle one is opposite to 
the others so that it helps digging Bmed

• Usually Binj Bext respectively stand for 
the magnetic field at injection (of RF, 
atoms…) and (beam) extraction 

• Bext should be the smaller magnetic
field in the ECR to favor Ion extraction 
there!
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Radial Magnetic Confinement

• The radial magnetic confinement 
is usually built with a hexapole
field

• Either with permanent magnets
• Br Up to 1.6 T maximum possibly 2T 

with some tricks
• Advantage : economical
• Inconvenient: not tunable

• Either with a set of 
superconducting coils
• Br>1.6 T-2 T
• Advantage: tunable online to 

optimize a population of ion in the 
source. 

• Inconvenient: expensive, 
complicated design and building 
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ECR Plasma build up

• Pumping & Gas Injection to reach P~10-6 to 10-7 mbar 
in the source

• Microwave injection  from a waveguide
• Plasma breakdown

• 1 single electron is heated by a passage through the ECR zone 
• The electron bounces thousands of time in the trap and kTe increases
• When kTe>I1+, a first ion is created and a new electron is available
• Fast Amplification of electron and ion population (~100 µs) 
• =>plasma breakdown 

• Multicharged ion build up
• When Te is established (kTe~1-5 keV), multicharged ions are continuously produced and 

trapped in the magnetic bottle
• Ions remains cold in an ECR: kTi~1/40 eV, (me<<mi) 

• Population of the loss cone through particle diffusion (coulombian interaction)=> 
constant change in the particle trajectory=> random redistribution of ∥	

	
• => ion extraction through the magnetic loss cone on the side of the source 

presenting the minimum magnetic field intensity
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The Famous plasma shape in an ECR Ion Source
• To understand why the ECR plasma ends with 3 lines only, one 

needs to follow the heated electron through the ECR zone
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Plasma Oscillations – ECR cut off density
• The plasma Frequency is the natural oscillation frequency

of a plasma, as a response to a perturbation
• Oscillations driven by electrons

•

• The simplest dispersion relation 
of an EM wave in a plasma is: 
•

• EM wave propagates if 

• ECR Cut-off density:

• ⇒	

• At a given ECR frequency, the plasma density is limited
• ∝
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Geller Scaling Law and ECRIS Standard Model

Above cut off: 
RF is reflected
=> no more ECR heating!
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The ECR Scaling law (R. Geller, 1987)
• The higher the frequency, the higher the beam current
• Plasma density ~
• Beam current ~ ~
• But the higher the ECR magnetic field required…

• ECR Magnetic Field  	 	
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The ECR standard model
• Optimum high charge state ion production and extraction have been 

experimentally studied as a function of ECR frequency.
• General Scaling laws for the magnetic field have been established
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