CERN ACCELERATOR SCHOOL 2012:

ELECTRON CYCLOTRON RESONANCE ION SOURCES - I

Thomas Thuillier LPSC, 53 rue des Martyrs 38026 Grenoble cedex France E-mail: thuillier@lpsc.in2p3.fr

T. Thuillier, CAS, Senec, 29/5-8/6 2012

CAS 2012 – ECR Ion Sources I

- Electron Cyclotron Resonance Ion Source I
 - Introduction
 - Summary of the main microscopic processes occuring in an ECRIS
 - Electron Cyclotron Resonance Mechanism
 - Magnetic confinement and ECR plasma generation
 - Geller Scaling Law and ECRIS Standard Model

Ingredients of Electron Cyclotron Resonance Ion Source

- An ECR ion source requires:
 - · A secondary vacuum level to allow multicharged ion production
 - A RF injection in a metallic cavity (usually multimode)
 - A sophisticated magnetic Field structure that enables to:
 - Transfer RF power to electrons through the ECR mechanism
 - Confine enough the electrons to ionize atoms
 - Confine enough ions to allow multi-ionization ions
 - Generate a stable CW plasma
 - An atom injection system (gas or condensables) to sustain the plasma density
 - An extraction system to accelerate ions from the plasma
- In the following, we will try to detail these points to provide an overview of ECR ion sources

Summary of the main microscopic processes occuring in an ECR Ion Source

Ion creation through Electron Impact Ionization (in gas or plasma)

- Ions are produced through a direct collision between an atom and a free energetic electron
 - $e^- + A^{n+} \to A^{(n+1)+} + e^- + e^-$
 - Threshold kinetic energy E_e of the impinging electron is the binding energy I_n of the shell electron: $E_e > I_n$
 - Optimum cross-section for $E_e \sim 2 - 3 \times I_n$
 - Higher energy electron can contribute significantly
 - Double charge electron impact ionization may also occur...

Ion creation through Electron Impact Ionization (in gas or plasma)

- Electron impact ionization cross section can be approximated by the semi-empirical Lotz Formula:
 - $\sigma_{n \to n+1} \sim 1.4 \times 10^{-13} \frac{\ln(\frac{E}{I_{n+1}})}{EI_{n+1}}$, E electron kin. energy
 - High charge state production requires hot electrons
 - $Max(\sigma_{n \to n+1}) \sim \frac{1}{I_{n+1}^2}$ => the higher the charge state, the lower the probability of ionization

I_{n=} nth Ionization Potential

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Example for Bismuth

5

Summary of the main microscopic processes occuring in an ECR Ion Source

Ion loss through Charge-Exchange (in gas or plasma)

- The main process to reduce an ion charge state is through atom-ion collision
 - $A^{n+} + B^0 \rightarrow A^{(n-1)+} + B^{1+}$ (+radiative transitions)
 - Long distance interaction: the electric field of the ion sucks up an electron from the atom electron cloud
 - Any ion surface grazing signs the death warrant of a high charge lon
 - semi-empirical formula :
 - $\sigma_{CE}(n \rightarrow n-1) \sim 1.43 \times 10^{-12} n^{1.17} I_0^{-2.76} (cm^2)$ (A. Müller, 1977)
 - I₀ 1st ionization potential in eV, *n* ion charge state

Example : Bismuth with O_2	Ζ	1+	22+	54+	72+	82+
	σ_{CE} (cm2)	1.5×10 ⁻¹⁵	5.6×10 ⁻¹⁴	1.6×10 ⁻¹³	2.2×10 ⁻¹³	2.6×10 ⁻¹³

Zero Dimension Modelization

 The ion charge state distribution in an ECRIS can be reproduced with a 0 Dimension model including a set of balance equations:

$$\frac{\partial n_i}{\partial t} = \sum_{j=j_{\min}}^{i-1} n_e n_j \left\langle \sigma_{j \to i}^{EI} v_e \right\rangle + n_0 n_{i+1} \left\langle \sigma_{i+1 \to i}^{CE} v_{i+1} \right\rangle - n_0 n_i \left\langle \sigma_{i \to i-1}^{CE} v_i \right\rangle - \sum_{j=i+1}^{j_{\max}} n_e n_j \left\langle \sigma_{i \to j}^{EI} v_e \right\rangle - \frac{n_i}{\tau_i}$$

- n_i ion density with charge state i
- σ , cross section of microscopic process
 - · Electron impact or charge exchange here
- τ_i is the confinement time of ion in the plasma
- $-\frac{n_i}{\tau_i}$ represents the current intensity for species i
- Free Parameters: ne, f(ve), τ_i
- Model can be used to investigate ion source physics

Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Summary of the main microscopic processes occuring in an ECR Ion Source

Elastic Collision in an ECRIS plasma

- The electromagnetic interaction between charged particles only occurs in distances < Debye Length λ_D (mm to μ m).
- The e-e and e-ion electromagnetic interaction in the Debye sphere (radius~ $\lambda_{\rm D}$) generate a net force acting on individual charged particles that continuously, and little by little, change their velocity direction
- The Elastic interaction is modelized by the mean time to deviate the initial trajectory by 90°. They are known as the Spitzer formulas:

90°

- Electron/Electron collision
- Electron-lon collision
- Ion/Ion Collision

$$v_{ee}^{90^{\circ}} = 5.10^{-6} \frac{n \ln \Lambda}{T_{e}^{3/2}}$$

$$v_{ei}^{90^{\circ}} = 2.10^{-6} \frac{zn \ln \Lambda}{T_{e}^{3/2}}$$

$$v_{ii}^{90^{\circ}} = z^{4} \left(\frac{m_{e}}{m_{i}}\right)^{1/2} \left(\frac{T_{e}}{T_{i}}\right)^{3/2} v_{ee}^{90^{\circ}}$$

- T in eV, n in cm-3, z = ion charge state, $\ln(\Lambda) \sim 10$
- · One should note that these perpetual interaction tends to randomize the velocity direction of a particle inside the plasma

Motion of a charged particle in a constant magnetic field

 Individual motion of a charged particle in a magnetic field ruled by:

•
$$m \frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B}$$

• Velocity is decomposed as $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$ with $\vec{v}_{\perp} \cdot \vec{B} = 0$ and $\vec{v}_{\parallel} \parallel \vec{B}$

Guidina centre

- We define the space vectors $\vec{e}_{\parallel} = \frac{\vec{B}}{B}$, $\vec{e}_{\perp 1} = \frac{\vec{v}_{\perp}}{v_{\perp}}$ and $\vec{e}_{\perp 2} = \vec{e}_{\parallel} \times \vec{e}_{\perp 1}$
- · General solution for the velocity is:

$$v_{\parallel} = const$$

$$\{\vec{v}_{\perp} = \rho\omega(\sin\omega t \cdot \vec{e}_{\perp 1} + \cos\omega t \cdot \vec{e}_{\perp 2})$$

$$\omega = \frac{qB}{qB} \text{ is the cyclotropic frequency}$$

- $\omega = \frac{1}{m}$ is the cyclotronic frequency $p = \frac{1}{p}$ is the Larmor radius (constant)
- The particle trajectory is an helix with radius ρ and pitch $p = \frac{2\pi v_{\parallel}}{\omega}$

Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Electron Cyclotron Resonance Mechanism

The Electron Cyclotron Resonance (1/3)

- Motion of an electron in a constant Magnetic Field B and a perpendicular time varying Electric Field $E_{x}(t)$
 - Assume $\vec{B} = B\vec{z}$; $\vec{E}(t) = E \cos \omega_{HF} t \vec{x}$
 - Assume initial particle velocity $\vec{v}_0 = \vec{0}$, and q = -e with e > 0• Assume $\omega_{HF} = \omega = \frac{eB}{m}$ (ECR resonance condition)

• Let's solve
$$m \frac{d\vec{v}}{dt} = -e\vec{v} \times \vec{B} - e\vec{E}(t)$$
! (1)
• Complex notation: $\vec{\tilde{E}}(t) = Ee^{i\omega t}\vec{x}$

• We look for velocity solution of type:
$$\vec{\tilde{v}} = \begin{cases} a(t)e^{i\omega t} \\ b(t)e^{i\omega t} \end{cases}$$

Let's substitute in (1):

•
$$\vec{v} = \frac{d}{dt} \begin{vmatrix} ae^{i\omega t} \\ be^{i\omega t} \\ 0 \end{vmatrix} = -\omega e^{i\omega t} \begin{vmatrix} a \\ b \\ 0 \end{vmatrix} \begin{vmatrix} a \\ b \\ 0 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} - \begin{vmatrix} \frac{eE}{m} \\ 0 \\ 0 \end{vmatrix} e^{i\omega t} \rightarrow \begin{cases} \dot{a} + i\omega a = -b\omega - \frac{eE}{m} \\ \dot{b} + i\omega b = a\omega \end{cases}$$

0

 $\vec{e}_{\perp 1}$

9

 \vec{B} •

 $\vec{E}(t)$

The Electron Cyclotron Resonance (2/3)

• (*)
$$\begin{cases} \dot{a} + i\omega a = -\omega b - \frac{eE}{m} (1) \\ \dot{b} + i\omega b = a\omega (2) \end{cases}; \qquad (2) \rightarrow i\omega a = i\dot{b} - \omega b \\ (\dot{2}) \rightarrow \dot{a} = \frac{\ddot{b}}{\omega} + i\dot{b} \end{cases}$$

• (2) & (2) in (1) $\rightarrow \frac{\ddot{b}}{\omega} + 2i\dot{b} - \omega b = -\omega b - \frac{eE}{m}$
• Assume that $\ddot{b} = 0 \rightarrow \dot{b} = \frac{ieE}{2m} \rightarrow b(t) = \frac{ieE}{2m} t$
• Substitute: $a(t) = \frac{\dot{b}}{\omega} + ib = \frac{eE}{2m\omega} (-\omega t + i)$
• So $\vec{v} = \frac{eE}{2m\omega} (-\omega t + i)e^{i\omega t}\vec{x} + \frac{ieE}{2m\omega} \omega te^{i\omega t}\vec{y}$
• And finally:
 $\vec{v} = Re(\vec{v}) = \frac{(-e)Et}{2m} (\cos \omega t \vec{x} + \sin \omega t \vec{y}) + \frac{eE}{2m\omega} \sin \omega t \vec{x}$
• The electron gains energy with time & describes a spiral

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Electron Cyclotron Resonance Mechanism

The Electron Cyclotron Resonance (3/3)

- ECR heating in a general transverse Electric Field (with $\vec{B} = B\vec{z}$)
 - Linear polarized static Electric field:
 - for $\vec{E}_x(t) = E \cos \omega t \vec{x}$:
 - $\overrightarrow{v_1}(t) = \frac{(-e)Et}{2m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{2m\omega}\sin \omega t \, \vec{x} \Rightarrow \text{ECR HEATING}$
 - Now for $\vec{E}_y(t) = E \sin \omega t \vec{y}$, applying the same reasoning, one can find the same result (!):
 - $\overrightarrow{v_2}(t) = \frac{(-e)Et}{2m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{2m\omega}\sin \omega t \, \vec{x} => \text{ECR HEATING}$
 - Static rotating electric field:
 - Clockwise rotation :
 - The electric field turns in the opposite direction of the electron
 - $\vec{E}_{-}(t) = \vec{E}_{x}(t) \vec{E}_{y}(t) = E \cos \omega t \, \vec{x} E \sin \omega t \, \vec{y}$
 - $\overrightarrow{v_{-}}(t) = \overrightarrow{v_{1}} \overrightarrow{v_{2}} = \overrightarrow{0}$ => NO ECR HEATING
 - Counter-Clockwise rotation case:
 - · Electron and electric field turn in the same direction
 - $\vec{E}_+(t) = \vec{E}_x(t) + \vec{E}_y(t) = E \cos \omega t \, \vec{x} + E \sin \omega t \, \vec{y}$

•
$$\overrightarrow{v_{+}}(t) = \overrightarrow{v_{1}} + \overrightarrow{v_{2}} = \frac{(-e)Et}{m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{m\omega}(\sin \omega t \, \vec{x}) => \text{ECR HEATING}$$

ECR Stochastic Heating (1/5)

- In the former slides, we studied the ECR heating starting from an electron at rest (v_0=0)
- In reality, the electron always has an initial kinetic energy $v_0\!\!\neq\!\!0$
- Let's study the influence of v₀ on the ECR heating, introducing the Phase shift between \vec{E} and \vec{v}_0 : $\vec{e}_{1,2} \neq \vec{v}(t)$

•
$$(\vec{E}(0), \vec{v}_0) = \varphi$$

- When $\varphi = \pi$, $\vec{E}(0) \parallel \vec{v}_0$, acceleration is maximum: the ideal case studied previously $\rightarrow \underline{\text{electron gains energy}}$
- When φ = 0, acceleration is now in the opposite direction, the electron is decelerated
 → <u>electron loses energy</u>!
- So, how does it work???

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Electron Cyclotron Resonance Mechanism

ECR Stochastic Heating (2/5)

- Let's solve again (1): $m \frac{d\vec{v}}{dt} = -e\vec{v} \times \vec{B} e\vec{E}(t)$, still using complex notations, but with the initial condition $\mathbf{v}_0 \neq \mathbf{0}$
 - $\vec{v}(t) = a(t)e^{i\omega t}\vec{x} + b(t)e^{i\omega t}\vec{y}$
 - $\overrightarrow{v_0} = \overrightarrow{v}(0) = v_0(\cos\varphi \,\overrightarrow{x} + \sin\varphi \,\overrightarrow{y})$
 - so $\operatorname{Re}(b(0)) = \operatorname{Re}(-v_0 i e^{i\varphi}) = \sin \varphi$ and $\operatorname{Re}(a(0)) = \operatorname{Re}(v_0 e^{i\varphi}) = \cos \varphi$
 - and still $\vec{E}_x(t) = E \cos \omega t \vec{x}$
- Same solving, but now: $\dot{b} = \frac{ieE}{2m} \rightarrow b(t) = \frac{ieE}{2m}t + b(0)$
- The velocity expression is now :

•
$$\vec{v} = \frac{(-e)Et}{2m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{2m\omega}\sin \omega t \, \vec{x} +$$
 Former solution (v₀=0)
 $v_0(\cos(\omega t + \varphi) \, \vec{x} + \sin(\omega t + \varphi) \, \vec{y})$ Initial condition (v₀≠0)

ECR Stochastic Heating (3/5)

- Finally, the general solution for a counter-clockwise Electric Field $\vec{E}_{+}(t) = \vec{E}_{x}(t) + \vec{E}_{y}(t)$ can be calculated to be :
- $\vec{v} = \frac{(-e)Et}{m} (\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{m\omega} \sin \omega t \, \vec{x} + v_0 (\cos(\omega t + \varphi) \, \vec{x} + \sin(\omega t + \varphi) \, \vec{y})$
- Expression of the Kinetic Energy of the electron as a function of time t and phase φ :

Electron Cyclotron Resonance Mechanism

ECR Stochastic Heating (4/5)

• electron Kinetic energy plot as a function of time t and phase φ :

ECR Stochastic Heating (5/5)

• If we assume that a population of N_e electron with velocity v_0 is **randomly distributed** in its velocity phase space (random phase with the wave), the mean kinetic energy evolution of the population is:

•
$$\langle T_{kin} \rangle_{\varphi}(t) = \frac{1}{2\pi} \int T_{kin}(t,\varphi) \, d\varphi$$

• And we find...
$$\frac{d}{dt} \langle T_{kin} \rangle_{\varphi}(t) > 0$$

That's the ECR stochastic Heating!

Electron Cyclotron Resonance Mechanism

Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

ECR Heating in a Magnetic Gradient

- In ECR Ion Sources, the ECR zone is usually reduced to a surface, inside a volume, where B is such that $\omega_{HF} = \omega = \frac{eB}{m}$
 - When electrons pass through the ECR surface they are slightly accelerated (in mean) and may gain ~1-50 eV of kinetic energy
 - The parallel velocity $v_{\rm I\hspace{-1.5pt}I}$ is unchanged, while $v_{\rm L}$ increases
 - The ECR zone thickness is correlated to the local magnetic field slope

Properties of particle motion in a magnetic field (1/2)

- $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$ with $\vec{v}_{\perp} \cdot \vec{B} = 0$
- $v_{\parallel} = const$ • $v_{\perp} = \rho\omega = const$ $\} \rightarrow T_{kin} = W_{\parallel} + W_{\perp} = \frac{1}{2}mv_{\parallel}^2 + \frac{1}{2}mv_{\perp}^2 = const$
- The kinetic energy of a charged particle is constant in a pure magnetic field
- The particle roughly follows the local magnetic field line, even if the field line is bended
 - Provided the magnetic field change per cyclotronic turn to be small $(\nabla B/B \ll 1)$

Magnetic Confinement and ECR Plasma Generation

Properties of particle motion in a magnetic field (2/2)

 The Magnetic Moment of a charged particle in a slowly varying magnetic field is an adiabatic constant of the movement

$$\mu = \frac{m v_{\perp}^2}{2B} = \frac{W_{\perp}}{B} \sim cst$$

19

- Demonstration:
 - We assume a local axi-symetric magnetic field which converges toward the z axis with $B_z(z,r) \sim B_z(z)$
 - From $div(\vec{B}) = 0 \rightarrow \frac{1}{r} \frac{\partial(rB_r)}{\partial r} + \frac{\partial B_z(z)}{\partial z} = 0$ (cylindrical coordinate)

t

$$\rightarrow d(rB_r) = -\frac{\partial B_z(z)}{\partial z} r dr \rightarrow B_r = -\frac{r}{2} \frac{\partial B_z(z)}{\partial z}$$

• The force acting on a particle rotating around z axis with a Larmor radius $r = \frac{v_{\perp}}{\omega}$ is:

•
$$\vec{F} = q(-v_{\perp}\vec{e_{\theta}} + v_{\parallel}\vec{e_z}) \times (B_r\vec{e_r} + B_z\vec{e_z}) \rightarrow F_z = qv_{\perp}B_r \rightarrow F_z = -qv_{\perp}\frac{r}{2}\frac{\partial B_z(z)}{\partial z}$$

• $F_z = -qv_{\perp}\frac{v_{\perp}}{2\omega}\frac{\partial B_z(z)}{\partial z} = -\frac{qm}{2qB}v_{\perp}^2\frac{\partial B_z(z)}{\partial z} = -\frac{mv_{\perp}^2}{2B}\frac{\partial B_z(z)}{\partial z} = -\mu\frac{dB_z(z)}{dz}$

- The elementary work associated with F_z is $dW_z = dW_{\parallel} = F_z dz = -\mu dB_z = -\frac{W_{\perp}}{B_z} dB_z$
- The kinetic energy constancy implies: $T_{kin} = W_{\perp} + W_{\parallel} = const \rightarrow dW_{\perp} = -dW_{\parallel}$

•
$$\frac{dW_{\perp}}{W_{\perp}} = \frac{dB_z}{B_z} \rightarrow \mu = \frac{W_{\perp}}{B_z} = Cons$$

The Magnetic Mirror Effect

- When a charged particle propagates along z toward a higher magnetic field region, it may be reflected back
 - $T_{kin} = W_{\parallel} + W_{\perp} = \frac{1}{2}mv_{\parallel}^{2} + \frac{1}{2}mv_{\perp}^{2} = const$

•
$$\mu = \frac{mv_\perp^2}{2B} = \frac{W_\perp}{B} \sim const$$

- $T_{kin}(z) = \frac{1}{2}mv_{\parallel}^{2}(z) + \mu B(z) = const$
 - When B increases, then the velocity is adiabatically transferred from $v_{\rm II}$ to $v_{\rm \perp}$
- The particle is stopped at $z = z_1$ where($v_{\parallel} = 0$) and $B(z_1) = \frac{T_{kin}}{"}$

•
$$T_{kin}(z_1) = \frac{1}{2}mv_{\perp}^2$$

 Any perturbation induced by the surrounding particles on the stopped particle will make it go back to where it came from => Mirror Effect

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Axial mirror done with a set of 2 coils

21

Magnetic Confinement and ECR Plasma Generation

Corrolary of Magnetic Mirroring: The Loss Cone

• The condition to trap a particle in a magnetic mirror from $B = B_{min}$ with a maximum peak at $B = B_{max}$ can be expressed as a function of the mirror ratio *R*:

• Magnetic confinement is not perfect, and it is used to EXTRACT ION BEAMS!

ECR Magnetic confinement: Minimum |B| structure

- ECR ion sources features a sophisticated magnetic field structure to optimize charged particle trapping
 - Superimposition of axial coils and hexapole coils
 - The <u>ECR surface</u> (|B|=B_{ECR}) is closed

Magnetic Confinement and ECR Plasma Generation

Axial Magnetic Confinement

- The axial magnetic confinement in a multicharged ECRIS is usually done with a set of 2 or 3 axial coils.
 - Either room temperature coils + iron to boost the magnetic field
 - Or superconducting coils
- In the case of 3 coils, the current intensity in the middle one is opposite to the others so that it helps digging B_{med}
- Usually Binj Bext respectively stand for the magnetic field at injection (of RF, atoms...) and (beam) extraction
- · Bext should be the smaller magnetic field in the ECR to favor lon extraction there!

 $|B_r|$

Radial Magnetic Confinement |B_r|

- The radial magnetic confinement is usually built with a hexapole field
- Either with permanent magnets
 - Br Up to 1.6 T maximum possibly 2T with some tricks
 - Advantage : economical
 - Inconvenient: not tunable
- Either with a set of superconducting coils
 - Br>1.6 T-2 T
 - Advantage: tunable online to optimize a population of ion in the source.
 - Inconvenient: expensive, complicated design and building

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Magnetic Confinement and ECR Plasma Generation

ECR Plasma build up

- Pumping & Gas Injection to reach P~10⁻⁶ to 10⁻⁷ mbar in the source
 RF
- Microwave injection from a waveguide
- Plasma breakdown
 - 1 single electron is heated by a passage through the ECR zone
 - The electron bounces thousands of time in the trap and $\ensuremath{\mathsf{kT}_{\mathrm{e}}}$ increases
 - When $kTe>I_1^+$, a first ion is created and a new electron is available
 - Fast Amplification of electron and ion population (~100 μs)
 - =>plasma breakdown
- Multicharged ion build up
 - When Te is established (kTe~1-5 keV), multicharged ions are continuously produced and trapped in the magnetic bottle

Superconducting

Atoms

hexapolar coil

- Ions remains cold in an ECR: $kT_i{\sim}1/40$ eV, $(m_e{<<}m_i)$
- Population of the loss cone through particle diffusion (coulombian interaction)=> constant change in the particle trajectory=> random redistribution of $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$
- => ion extraction through the magnetic loss cone on the side of the source presenting the minimum magnetic field intensity

(HallBach Hexapole With 36 permanent magnets 30° rotation/magnet)

vacuum

Magnetic Confinement and ECR Plasma Generation

The Famous plasma shape in an ECR lon Source

 To understand why the ECR plasma ends with 3 lines only, one needs to follow the heated electron through the ECR zone

Geller Scaling Law and ECRIS Standard Model

Plasma Oscillations - ECR cut off density

- The plasma Frequency ω_p is the natural oscillation frequency of a plasma, as a response to a perturbation
- · Oscillations driven by electrons ρ_i(x) At equilibrium, $\rho_i(x) + \rho_e(x) = 0$ • $\omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$ lons • x $\rho_e(x)$ Electrons The simplest dispersion relation → X of an EM wave in a plasma is: If $\rho_i(x) + \rho_e(x) \neq 0$ A force is acting on electrons $_{\star}\rho_{i}(x)$ • $\omega^2 = \omega_p^2 + k^2 c^2$ lons • EM wave propagates if $\omega > \omega_n$ ⋆ χ _eρ_e(x) • ECR Cut-off density: electrons X • $\omega > \omega_p \Rightarrow n_e < \frac{m_e \varepsilon_0 \omega^2}{c^2}$ => Oscillations at the plasma frequency • At a given ECR frequency, the plasma density is limited Above cut off: RF is reflected • $n_e \propto \omega_{FCR}^2$ => no more ECR heating! 28

The ECR Scaling law (R. Geller, 1987)

- The higher the frequency, the higher the beam current
- Plasma density $n \sim f^2_{ECR}$
- Beam current $I \sim n \sim f_{ECR}^2$
- But the higher the ECR magnetic field required...
- ECR Magnetic Field $B_{ECR} = \frac{f_{ECR [GHz]}}{28} Tesla$

f ECR [GHz]	λ _{ecr} [cm]	n_e [cm⁻³]	Λ _{0->1+} [cm]	Τ_{0->1+} [μs]	B _{ECR} [T]
2.45	~12	7.4 ×10 ¹⁰	~7	~10	0.09
14	~2	2.5×10 ¹²	0.2	3	0.5
28	~1	~10 ¹³	0.05	0.7	1
60	~ 0.5	4.4×10 ¹³	0.01	0.17	2

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Geller Scaling Law and ECRIS Standard Model

The ECR standard model

- Optimum high charge state ion production and extraction have been experimentally studied as a function of ECR frequency.
- General Scaling laws for the magnetic field have been established

$$B_{ECR} = \frac{f_{ECR} [GHz]}{28} Tesla$$

f _{ECR} [GHz]	14	28	56
B _{ECR} [T]	0.5	1	2
B _{rad} ∼2×B _{ECR}	1	2	4
B _{inj} ∼3-4×B _{ECR}	2	3.5	7
B _{med} ~0.5-0.8× <i>B_{ECR}</i>	0.25	0.5	1
B _{ext} ≤ <i>B_{rad}</i>	1	2	4
	~1990	<i>2003</i> VENU	2 S

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012