Negative Ion Sources: Magnetron and Penning

Dan <u>Faircloth</u> Ion Source Section Leader Rutherford Appleton Laboratory

Overview

- History
- The caesium revolution
- Magnetron sources
- Penning sources
- Failure modes and sputtering
- ISIS Developments

Albert Hull

Using magnetism to find alternatives to patented electrostatic control of valves

ЕхВ

Comet valves? Boomerang valves? Ballistic valves? MAGNETRON VALVES

1920's Starts adding gasses to his valves and going to high powers.

Langmuir talks to his fellow New England scientists

The Penning style source (Calutron) starts the Cold War

1970s Caesium Revolution!

- Soviets spread the word and develop sources
- BNL Krsto Prelec et al. develop the magnetron for NBI
- LANL Paul Allison et al. develop the Penning
- Berkley Ehlers+Leung develop Surface Converter sources
- Fermilab Chuck Schmidt et al. develop the BNL
 magnetron for accelerators

Caesium: Friend of H⁻ mortal enemy of high voltage

INR Moscow Penning Vise beam current 40 mA Pulse beam current 40 mA Pulse repetition rate (PRR) 2 – 50 Hz Macro-pulse beam current duration 60 – 200 μs Normalized emittance ±0.35 π·mm·mrad

RED - Ins Saurce, IV ACTIVE VI		
RFQ - ION SOURCE		29-FEB-2008 13:00:47
Gas Control and Vacuum	Extractor	Ion Source Temperatures
Gas ONOFF ON	Voltage 18.80kV 18.53kV	Cathode 489C
H_Pressure 3.10V 3.80 Um	Ext ON OFF	Anode 442C
7.2E-05MBAR	Control Status REMOTE	Body 383C
H Flow 23.18ml/min	Interlock Status	Boiler 157C 159C
1. 21 IOW	Main IIk 📃	Transport 315C 322C
Control Status REMOTE	RESET Personnel lik	Transport Monitor 382C
Interlock Status	Fast lik 🔴	
AC and DC Arc	Magnet	Control Status REMOTE
Ac and Do Are	magnet	Interlock Status
DC current 0.0A 0.00A	Current 9.60A 9.68A	Heater Status
DC voltage 4.15V	ON	Theater Status
AC current 56.0A 55.6A		Platform 36.0 -35.9kV
AC current slider control DC	Voltage 30.1V	Taning Ion Source Ion Source
ON/OFF OFF	Control Status LOCAL	Strip Chart Logging
Control Status REMOTE	Interlock Status 🥚	

SPS Failure Modes

- Blocked caesium transport
- Failed heaters
- Failed piezo hydrogen valve
- Ancillary equipment failure
- Sputtering
 - Blocked Aperture Plate
 - Shorted Electrodes

	DECV	ENIAL	DNI	ICIC
Discharge Current (A)	47	50	18	55
Pulse length (us)	75	80	700	800
Rep rate (Hz)	6.25	15	7.5	50
Duty Factor (%)	0.047	0.12	0.525	4
ifetime (Days)	900	200	270	30
ifetime (Plasma Davs)	0.42	0.24	1.42	1.2

ESS Bilbao

Future

Plasma and Extraction Test Stand:

- Detailed understanding of plasma
- Detailed understanding of extraction
- Scaled source

How the Penning Source Ended the Cold War

MAD Strategy: Mutually Assured Destruction

Thanks to: Dan Bollinger for magnetron slides Viktor Klenov for INR Penning photographs