

Electron Beam Ion Sources

Günter Zschornack

Dreebit GmbH Dresden

and Technische Universität Dresden Department of Physics

and Helmholtzzentrum Dresden-Rossendorf Institute of Ion Beam Physics and Materials Research

June 12 DREEBIT GmbH Seite 1

Why Highly Charged Ions ?

Exciting properties of highly charged ions

Properties of Highly Charged Ions

The potential energy of an ion increases with the degree of ionization. Example:

Xe44+ has a potential energy that is **4200 times higher** than that of Xe1+

Xe54+ has a potential energy that is **16700 times higher** than that of Xe1+

Properties of Highly Charged Ions

High power Deposition into the Surface

The deposition of potential energy leads to ultrafast intense electronic excitations up to: **1012 … 1014 W/cm²**

Pathways of Potential Energy

Engery Deposition into Surface

Highly Charged Ions give higher Yields of **Secondary Ions and Secondary Electrons**

J.W.McDonald et al: NIM B 240, 829 (2005) 300 **HOPG** 250 electron emission / electron emission / 200 **Total** Au electron 150 yields SiO₂ 100 vs ion charge 550 Si state q $\overline{0}$ 70 10 20 30 40 50 60 80 0 ion charge

Properties of Highly Charged Ions

The size ratio of a hydrogen-like nickel ion to a neutral hydrogen atom is approximately equal to the size ratio of the planet neptune to the sun.

June 2, 2012 DREEBIT GmbH 8

Properties of Highly Charged Ions

Extremely Compact Accelerator Structures are possible

Due to their high charge q ions can be accelerated very effectively

- \sim q for linear accelerators
- \sim q² for ring accelerators

Example:

Xe1+ and Xe44+ acceleration at Δ**U = 20 kV**

Applications of HCI

Highly Charged Ions in Basic Research and Industry

Applications of HCI

Highly Charged Ions in Basic Research and Industry

How to Produce Highly Charged Ions?

Electron Beam Ion Trap - Basic Idea

Selected Milestones

Selected Milestones

Selected Milestones

EBIT Design

"classical" **room-temperature EBIT cryogenic EBIT •** superconducting coils permanent magnets (SmCo, NdFeB) \rightarrow (3... 8) T magnetic field (250…620) mT at the axis \Rightarrow j_e = (200... 600) A/cm² \Rightarrow j_e > 1000 A/cm² highest charge states bare ions up to Z=28, Xe(52…54)+, up to U (90…92)+ Kr34+, Xe(44…48)+, Ir67+ large devices, compact, transportable, liquid helium cooling low initial and maintenance costs, latest developments: short setup times Refrigerator cooling

Selected Milestones

There are actually about 60 EBIS/EBIT around the world.
(For a list see R.Becker, O.Kester; RSI 81(2010) 02A513)

Most of them are special laboratory constructions.

Worlwide there are only two commercial offerers:

1. Physics and Technology Livermore (USA)

REBIT (Refrigerated Electron Beam Ion Trap)

2. DREEBIT GmbH Dresden (Germany) Dresden EBIT Dresden EBIS Dresden EBIS-A Dresden EBIS-SC Room-Temperature EBIS/T

(Refrigerated Electron Beam Ion Trap)

LLNL EBIT Dresden EBIT (at the MPI for Plasma Physics Berlin)

Room-Temperature EBIS

Dresden EBIS-SC – A superconducting EBIS

 $10₁$

 10

 $\overline{1}$

- L-He free at 4.2K
- electron beam energy up to 30 keV
- electron beam current up to 700 mA
- magnetic field on-axis 6T

DREEBIT GmbH 21 <mark>Ar'^{o+} 2·10′ 2</mark> 2

 C^{4+}

 C^{6+}

 $143+$

 8.10^{8}

 4.10^{8}

 1.10^{6}

The intended purpose of an EBIS is to produce highly charged ions. For a certain ionisation stage q two opposite processes take place in the electron beam:

Charge-generating processes

- Ionisation (ion)
- Charge Exchange (ce)
- Radiative Recombination (RR)

Charge destructive processes

- Ionisation
- Charge Exchange
- Radiative Recombination
- June 2, 2012 DREEBIT GmbH 22 • Ion loses from the trap

Charge Balance of Ions with the Charge State q

Charge-generating processes (sources for Aq+) Charge destructive processes (sinks for Aq+)

 U_t - depth of the potential wall (radial and axial) trap potential kT_{ion} - ion energy

- \rightarrow We should consider
	- the electron beam energies
	- the vacuum in the ionization region
	- the excitation functions of individual processes

June 2, 2012 DREEBIT GmbH 24

The basic process in the electron beam of an EBIS is **successive electron impact ionization** with an average ionization time for the ionization of ions with the charge state q of

$$
\tau_{q \to q+1} = \frac{n_q}{f_{q \to q+1}} = \frac{1}{n_e v_e \sigma_{q \to q+1}} = \frac{e}{j_e \sigma_{q \to q+1}}
$$
\nwith the collision frequency\n
$$
f_{q \to q+1} = n_e n_q v_e \sigma_{q \to q+1}
$$
\nThis expressions lead to the **ionization factor**\n
$$
j_e \tau_{q \to q+1} = \frac{e}{\sigma_{q \to q+1}}
$$
\ni.e. ionization is possible if we have\n
$$
j_e \tau_{q \to q+1} \geq \frac{e}{\sigma_{q \to q+1}}
$$

Ionization Factor vs. Atomic Number and Degree of Ionisation

June 2, 2012 DREEBIT GmbH 26

Ionization Factor vs. Atomic Number, Degree of Ionization and Electron Energy

Electron Binding Energies

Threshold values for ionization

The optimal energy for ionizing an ion from the charge state q to to $q+1$ is nearly e-times the ionization energy of the weakest bound electron.

Ionization starts at the ionization threshold E_I .

Electron Binding Energies

Threshold values for ionization

June 2, 2012 DREEBIT GmbH 29

Single Electron Impact Ionization

$$
\sigma_{q \to q+1} = 4.5 \cdot 10^{-14} \sum_{i=1}^{N} \frac{\ln \frac{E_e}{E_{nl}}}{E_e \cdot E_{nl}} \left[cm^2 \right]
$$

Lotz formula for $E_e \gg E_{nl}$ (estimated error: up to 10%; N: number of subshells)

June 2, 2012 DREEBIT GmbH 31

 $c=1$ for neutrals and $c=0.75$ for ions

 E_q – sum of the ionization potentials of both weakest bound electrons

N - number of electrons in the atom/ion

June 2, 2012

Charge Exchange

$A^{q+} + A^{p+} \rightarrow A^{i+} + A^{(q+p-i)+}$	\n $A^{r+} + A^{r^*} \rightarrow A^{r^{(q+j)}+A^{r^*}}$ \n
\n Cross sections are independent on the electron energy.\n	
\n Change exchange with neutrals\n	
\n 6\n	
\n 10 ¹⁴ \n $\frac{1}{6}$ \n <math< td=""></math<>	

Radiative Recombination (RR)

electron beam $cm²$ $A^{q+} + e^- \rightarrow A^{(q-1)+} + \hbar \omega$ Xe^{54+}
 Xe^{44+}
 Xe^{36+} E_{ρ} 10^{-18} cross section \sim \sim hy 10^{-20} Charge exchange is strong at low electron energies. Xe^{28+} 10^{-22} Xe^{18+} xe^{10+} Xe^{1+} 10^{-24} Due to RR processes ionization in an EBIS is more efficient at higher $10²$ $10³$ $10⁴$ $10¹$ electron energies. eV electron energy Theory from Stobbe (for fully ionized atoms) $\sigma_{q \to q-1}^{RR} = 2.10 \cdot 10^{-22} \frac{E_0^2}{nE_{cm}(E_0 + n^2 E_{cm})} [cm^2]$ Eo – binding energy of the hydrogen-like ground-state ion n - main quantum number of the shell where the electron is captured E_{cm} – CM collision energy between electrons and ions

 $\sigma_{q \to q-1}^{RR} = \frac{8\pi}{3\sqrt{2}} \alpha \lambda_e^2 \chi_q(E_e) \ln\left(1 + \frac{\chi_q(E_e)}{2(n + (1 - W_n) - 0.3)}\right)$

with $\chi_q(E_e) = (Z + q)^2 \frac{13.6 \text{ eV}}{4E_e}$

Theory from Kim and Pratt (for all ions) W_n - ratio of the number of unoccupied states to the total number of states in the subshell λ_e - Compton-wavelength λ_e - Compton-wavelength

Radiative Recombination (RR)

35 June 2, 2012

Dielectronic Recombination (DR)

Ion loss ratio
Electrical trap capacity

The total number of ions stored in an EBIs is determined by the electrical trap capacity C_{el}.

Assumption:

Homogeneous electron beam passing an ion trap of the length L with an electron beam current I_e. The electron energy is E_e.

With

$$
I_e = \frac{dQ}{dt}, \ v_e = \frac{dx}{dt}, \ v_e = \sqrt{\frac{2E_e}{m_e}} \implies \Delta Q = \frac{I_e \Delta x}{v_e} = \frac{I_e L}{\sqrt{\frac{2E_e}{m_e}}}
$$

folllows

$$
C_{el} = 1.05 \cdot 10^{13} \frac{I_e[A] L[m]}{\sqrt{E_e[eV]}}
$$

June 2, 2012 DREEBIT GmbH 37

Electrical trap capacity

$$
C_{el} = 1.05 \cdot 10^{13} \frac{I_e[A] L[m]}{\sqrt{E_e[eV]}} \cdot f \cdot \alpha
$$

For practical purposes we must consider

- the charge compensation $f(f<1)$ of the electron beam,
- the fraction α of ions with a certain ion charge state in the ion charge state spectrum of the produced ions.

Example:

Trap capacity of the Dresden EBIS-SC at different electron beam currents and different electron beam energies.

Electron beam: space charge potential

Radial trap potential

$$
V_e(r) = \begin{bmatrix} U_e \left(\frac{r}{r_e}\right)^2 & \text{für } r < r_e \\ U_e \left(2 \ln \frac{r}{r_e} + 1\right) & \text{für } r > r_e \end{bmatrix}
$$

with

$$
U_e = \frac{I_e}{4\pi\varepsilon_0 v_e} = \frac{1}{4\pi\varepsilon_0} \cdot \sqrt{\frac{m_e}{2}} \frac{I_e}{\sqrt{E_e}}
$$

For estimations we get:

$$
U_e = \frac{30 I [A]}{\sqrt{1 - \left(\frac{E_e [keV]}{511} + 1\right)^{-2}} [V]}
$$

Example:

Radial trap potentials in a Dresden EBIT.

The potential of the drift tubes is superimposed by U_{e} in the center of the electron beam.

Electron beam: equation of motion and beam radius

Equation of motion for r

$$
\frac{d^2r}{dt^2} = \frac{el_e}{2\pi\varepsilon_0 v_z r m_e} + \frac{e^2}{4m_e^2} \left(\frac{B_c^2 r_c^4}{r^3} - B_z^2 r\right)
$$

 B_c – B-field at the cathode

 r_c – cathode radius

Assuming $B_c = 0$ exists a stationary solution of the above equation. The solution corresponds to an equilibrium flow of the electrons with constant radius, the so- called Brillouin-Flow.

We obtain:

$$
B = B_B = \frac{1}{r} \left(\frac{2I_e m_e}{\pi \varepsilon_0 v_z |e|} \right)^{1/2} \quad and \quad r_B = \frac{1}{B_B} \left(\frac{2I_e m_e}{\pi \varepsilon_0 v_z |e|} \right)^{1/2}
$$

For a Brillouin flow all electrons have a constant distance to the beam center. Thereby the Lorentz force caused by the magnetic field is compensated by the space charge and the centrifugal force of the rotating electrons.

June 2, 2012 DREEBIT GmbH 40

Electron beam: beam radius and Herrmann theory *

Electron beam: beam radius and Herrmann theory*

Electron beam radius, enclosing 80% of the beam

$$
r_e = r(0) \cdot \sqrt{\left(1 - \frac{r_0}{r(0)}\right)^2 + \frac{2}{1 + \frac{B_c^2 r_0^4}{B_z^2 r_0^4}} \left(\frac{v_e \tan \gamma}{m_e} \gamma\right)}
$$

and

$$
r_0 = r_B \left(\frac{1}{2} + \frac{1}{2} \left[1 + 4 \left(\frac{8kT_C r_C^2 m_e}{e^2 B_Z^2 r_B^4} + \frac{B_C^2 r_C^4}{B_Z^2 r_B^4} \right) \right]^{1/2} \right)^{1/2}
$$

with

- $r(0)$ beam radius at the cathode
- angle deviation from the source axis γ $\overline{}$

* (G.Herrmann; J.Appl.Phys., 29 (1958) 127)

Electron beam: experimental results

- Electron beam density determines the ionization rate \rightarrow investigation necessary for understanding the ionization process
- Dresden EBIT:

 $r_{80\%}$ = 89±4 µm; j_e = 96±9 A/cm² @ Ee = 7.8 keV; Ie = 30 mA

Generally:

(40…200) µ**m**

electron beam diameter

Electron Beam Ion Sources

Production of HCI

EBIS/T – Operation Modes

Three operation modes:

1. Permanently opened trap – **transmission mode**

The trap is permanently open and ions are produced in the electron beam without axial trapping.

This mode delivers high currents of the lowest charged ions (nA ... μ A).

2. Partially closed trap – **leaky mode**

Selecting a low axial potential wall a certain amount of ions with adequate kinetic energy can surpass the potential wall and are extracted continously.

This mode delivers ions with preferently low up to intermediate ion charge states (up to nA) and a low fraction of higher ion charge states.

3. Periodically opened and closed trap – **pulsed mode**

The potential wall is high enough to trap all ions axially. Periodical opening of the trap releases pulses of ions extracted with typical pulse lengths in the order of some microseconds and allow to produce highest currents of highly charged ions (up to μA per pulse).

Particularities of EBIT/EBIS puls form – classical extraction

Particularities of EBIT/EBIS puls form – ns ion extraction

FIG. 3. Extracted ionic charges per Ar^{16+} pulse in dependence on the extraction time t_{extr} (U₀=4.0 kV, I_e=24 mA, t_{cyc} =100 μ s, t_{wait}
=1 s, p=3.1×10⁻⁹ mbar). The solid line is a guide to the eye.

REVIEW OF SCIENTIFIC INSTRUMENTS 81, 02A507 (2010)

DREEBIT GmbH **1988 Short time ion pulse extraction from the Dresden electron beam ion trap^{a)} June 2, 2012**

U. Kentsch.¹ G. Zschornack.^{2,b)} A. Schwan.¹ and F. Ullmann¹ ¹Dreebit GmbH, D-01109 Dresden, Germany ²Institute of Applied Physics, Dresden University of Technology, D-01062 Dresden, Germany

Particularities of EBIT/EBIS puls form – flat top pulses

Proton pulse from the Dresden EBIS-A after direct trap opening and after switching with the PSU forming a flat-top pulse shape

One of the requirements for the applications of EBIS with synchrotrons are flat-top pulses.

 $\frac{1}{2}$ June 2, 2012 Controlling properly U_B flat-top pulses with FWHM to at least $100 \mu s$ can be formed.

Particularities of EBIT/EBIS **Emittance**

June 2, 2012 DREEBIT GmbH 50

Particularities of EBIT/EBIS Emittance

The scheme of the Pepper-Pot Emittance Meter is pictured in figure 2. The incoming particle beam passes the Pepper-Pot mask and is separated into several beam spots. The particles hitting the MCP create an electron current which is amplified passing the two micro channel plates. The electrons are than accelerated towards the phosphor screen. The visible light spots created at the phosphor screen are detected after 90° deflection by a CCD camera.

The emittance of the beam can be determined from the position, the size, and the shape of the light spots.

Particularities of EBIT/EBIS **Emittance**

Particularities of EBIT/EBIS Energy spread

Particularities of EBIT/EBIS Energy spread

EBIS: Diagnostics

Processes in the ion source

EBIS: Diagnostics

q/A Analysis

q/A analysis: dipole magnet Examples for ion charge state spectra

Signal intensity of individual ion charge states measured at different ionization times \rightarrow reveals the evolution of charge states in the trap

Further analysis allows for

- characterizing the charge balance inside the trap
- estimating the ionisation factor of the source
- determining electron impact ionisation cross sections.

EBIS: Diagnostics

q/A Analysis with a Wien filter

a resolution of better than 80 is available

EBIS: Diagnostics

q/A Analysis with a Wien filter

q/A analysis: Wien filter Examples for ion charge state spectra

DREEBIT Ion Sources

Pulsed mode

Pulsed mode (ions/pulse)

Beams of molecular fragments

A unique possibility to form beams of exotic molecular fragments

June 2, 2012 DREEBIT GmbH 65

EBIS: X-Ray Diagnostics X-ray output from EBIS

For an x-ray detector the following count rate can be expected

$$
\dot{N_q} = \varepsilon \frac{\Omega}{4\pi} V j_e \omega_q n_q \sigma_q^{exc}
$$

$$
\dot{N_q} = \varepsilon \frac{\Omega}{4\pi} l I_e \omega_q n_q \sigma_q^{exc}
$$

 Σ_{q}^{exc}

- ε detector efficiency
- $Ω/4π$ solid angle
V apparent b
	- apparent beam volume
- L apparent beam length
- ω_{q} x-ray fluorescence yield
- n_q number of ions with the charge q
- E_{if} transition energy
	- excitation cross section

The emitted radiation power can be estimated as

$$
P = \dot{N_q} E_{if} e
$$

For individual dipole lines radiation power on the order of nW was recorded

EBIS: X-Ray Diagnostics X-ray output

EBIS are excellent sources of X-rays from highly charged ions.

X-rays from highly charged ions radiation power of the Dresden EBIT

Z-dependence allowed and forbidden transitions HFS, QED, parity violation

Table III. The Z-dependence of the probabilities of allowed and forbidden transitions, hyperfine interaction, OED effect, relativistic effects and parity violation effect along the Hydrogen isoelectronic sequence.

With higher atomic number the intensity of otherwise weak transitions increases.

For highly charged ions otherwise forbidden transitions can become dominant.

Physica Scripta. Vol. T120, 47-52, 2005

Physics Based on Electron Beam Ion Traps*

Yaming Zou^{1**} and Roger Hutton²

¹The Key Lab of Applied Ion Beam Physics, The Ministry of Education, China Modern Physics Institute, Fudan University, Shanghai 200433, China ²Astronomy Department, Lund University, BOX 43, SE 221 00 Lund, Sweden

X-rays: excitation vs. ionisation

Wavelength X-ray spectroscopy: Argon

Transition energies in one- and twoelectron systems can be calculated very precisely.

Therefore hydrogengen-like ions are excellent sources for well known x-ray transitions: **Lyman lines**

Wavelength X-ray spectroscopy: Xenon

E: 3s – 2p F: 3d – 2p
Energy and Wavelength X-ray spectroscopy: Iron \bigcirc B n O (B) Electron & Ion Beam Technologies

X-Ray Spectroscopy: Scatterplot

Time-resolved x-ray spectroscopy

Time-resolved KKL-DE x-ray spectroscopy

Applications of highly chargeds ions (examples)

Applications of highly chargeds ions (examples)

DREEBIT GmbH 78 June 2, 2012

Nanostructuring with highly charged ions

Nanostructuring with HCI

Focussed Ion Beams

Implantation in Si:

Realization of different implantation depths due to different ion charge states at a fixed ion acceleration potential

 Production of ion beams with different ion charge states with diameters in the micrometre up to nanometre region.

June 12 DREEBIT GmbH Seite 84

Applications of HCI

Applications of HCI TOF-SIMS

Medical Particle Therapy

Hadron Therapy

© Heidelberger Ionentherapiezentrum

- Cancer is the the second most common cause of death and about 33% of all inhabitants of the EU will confront some kind of cancer in their life
- About 45% of cancer patients can be treated, mainly by surgery and / **Or radiation therapy [S. Peggs, PAC07, June 25'07]**
- Hadron therapy with protons and carbon ions is - taken its success rate - the second most successful technique in cancer treatment, outmatched only by surgery
- Until 2005 about 40.000 patients worldwide were treated by particle \bullet therapy at 22 PT centers (Europe, USA, Japan, China, South Africa). The number of treated patients is constantly increasing.

Advantages of Therapy with Ion Beams

It is possible to focus carbon ions with great precision directly onto the tumor. Therefore, only the tumor is damaged irreversibly but the healthy tissue remains intact.

Another advantage is the high biological efficiency of carbon ions, causing more damage in the tumor cells than other kinds of irradiation.

Cancer Therapy

Advantages of Ion Therapy

Basic Structure of a Synchrotronbased Irradiation Facility

Heidelberg Hadron Therapy Facility HIT:

R.Becker, ICIS-05 PA9/RSI MS # C05005

Simplification of Therapy Facilities by using a New Kind of Ion Source

Particle therapy

June 12 DREEBIT GmbH Seite 95

Charge Breeding

Charge Breeding

Charge Breeding

Thank you … and thanks to the team!

Dr. G.Zschornack

R.Mertzig

U.Kentsch

E.Ritter

http://www.tu-dresden.de

Dr.V.P.Ovsyannikov Dr. F.Grossmann Dr. R.Heller Dr. A.Thorn

M.Schmidt

M.Hartig

Dr. F.Ullmann A.Schwan

J.König

M.Kreller

http://www.dreebit.com

