Ion Sources for Fusion

W. Kraus

Ion sources in fusion devices

Ion sources are used in neutral beam injection systems (NBI)

Neutral atoms can penetrate through the confining magnetic field.

Used for
Neutral beam heating
Current drive
Diagnostics beams
Outline

- Plasma heating by neutral beam injection
- Positive ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

NBI: the work horse

NBI heating is dominant in most large past, present, and planned tokamaks

<table>
<thead>
<tr>
<th></th>
<th>(R_0) (m)</th>
<th>(a) (m)</th>
<th>(I_p) (MA)</th>
<th>(B_t) (T)</th>
<th>P-NBI</th>
<th>N-NBI</th>
<th>ECRH</th>
<th>ICRH</th>
<th>LH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITER</td>
<td>6.2</td>
<td>2.0</td>
<td>15</td>
<td>5.3</td>
<td>-</td>
<td>33</td>
<td>20</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>JET</td>
<td>2.96</td>
<td>1.25</td>
<td>4.8</td>
<td>3.45</td>
<td>34*</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>JT-60U</td>
<td>3.4</td>
<td>1.1</td>
<td>5</td>
<td>4.2</td>
<td>40</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>JT-60SA</td>
<td>2.97</td>
<td>1.17</td>
<td>5</td>
<td>2.25</td>
<td>24</td>
<td>10</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TFTR</td>
<td>2.4</td>
<td>0.8</td>
<td>2.2</td>
<td>5</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>EAST</td>
<td>1.7</td>
<td>0.4</td>
<td>1.0</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>DIII-D</td>
<td>1.67</td>
<td>0.67</td>
<td>2.1</td>
<td>20</td>
<td>-</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ASDEX Upgrade</td>
<td>1.65</td>
<td>0.65</td>
<td>1.2</td>
<td>3.1</td>
<td>20</td>
<td>-</td>
<td>6</td>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

*recently upgraded
Neutral beam heating: trapping and penetration

Interaction of fast neutrals with the plasma

- ionisation by collisions with plasma electrons and ions
- drift of the fast ions in the magnetic field
- collisions of the fast ions with plasma ions and electrons => slow-down and scattering
- charge exchange collisions with background neutrals

Penetration depth

Attenuation of the beam in an uniform Hydrogen plasma

\[I = I_0 e^{-x/\lambda} \]

Approximation for the absorption length for ionisation

\[\lambda = \frac{E}{18 \cdot n \cdot A} [m] \]

Penetration depth depends on the energy

Example AUG: 100 keV D beam, \(n_e = 5 \times 10^{19} \text{ m}^{-3} \) => \(\lambda = 0.5 \text{ m} \)

Fraction not absorbed by the plasma: shine-through
determines minimum plasma density
Slowing down – power to the ions and electrons

Change of energy of a fast ion

\[\frac{dE}{dx} = \frac{\alpha}{E} - \beta \sqrt{E} \]

to ions
to electrons

Stopping by ions and electrons is equal at the “Critical energy” \(E_c \)

\(E_c \) depends on the electron temperature
Lower energy of \(E_0/2 \) and \(E_0/3 \)
\(\Rightarrow \) Ion heating dominates for \(E_0 < 100kV \)

Neutral Beam Current Drive (NBCD)

Why Current Drive (CD)?

- **Tokamaks**: Plasma current is driven inductively (principle: transformer).
 \(\Rightarrow \) pulsed operation
 \(\Rightarrow \) for reactor: pulsed energy production, pulsed forces and heat loads on components \(\rightarrow \) reduced lifetime. Therefore aim (e.g. on ITER)
 - "stationary tokamak" - completely non-inductive CD
 - enhanced pulse length - significant part of \(I_p \) non-inductive CD

- **Local modification of plasma current profile - \(j_P(r) \)**
 to improve plasma confinement (internal transport barriers, improved \(H \)-mode) and/or plasma stability (NTM stabilisation)

- Each of the heating systems foreseen for ITER is able to drive plasma current
 \(\Rightarrow \) "Heating & Current Drive Systems"
Principle - Driving Toroidal Plasma Current by NBI

The toroidally circulating fast ions - when slowing down - represent a current ("fast ion current")

This fast ion current is modified by the interaction of the fast ions with the plasma, but generally some net current remains:

→ Neutral beam driven current I_{NBCD}

Current drive efficiency

$$\eta_{\text{CD}} = \frac{I_{\text{NBCD}} n_e R}{P_{\text{dep}}}$$

R major radius
P_{dep} deposition power

At present about 0.2 – 0.3

Neutral Beam Systems

Neutral beams are produced by:

- Powerful ion beam by the ion source and the extraction system
- Neutralisation by charge exchange collisions of the fast ions with the cold gas in the neutralizer
- Not neutralised part of the beam is deflected to the ion dump
- The beam power is measured by a calorimeter
The ASDEX Upgrade NBI System (Garching, Germany)

- Ti pump
- Neutraliser
- PINIs (4x)
- Magnet
- Calorimeter (full neutr. power)
- ASDEX Upgrade
- Ion dump
- Box height: ~ 4 m
- Grid - Plasma: ~ 7 m

NBI system of JET (Joint European Torus, Culham, UK)

- 3 beamlines with 8 sources each,
- Beam energy:
 - 80 keV (H)
 - 130 keV (D)
Outline

- Plasma heating by neutral beam injection
- **Positive Ion sources for Neutral Beams**
 - Negative ion based neutral beam injection
 - Beam extraction
 - Surface production of negative ions
 - Negative ion sources
 - Experimental results with the RF prototype
 - Giant source for ITER
 - Test facilities
Positive ion sources

Requirements:

- Beam species \(H_n^+ , D_n^+ \)
- Beam current 30 – 90 A
- Current density \(230 – 300 \text{ mA/cm}^2 \)
- Beam energy 55 – 160 keV
- Proton fraction (H+, D+) 70 – 90%
- Pulse duration < 10 s
- Plasma homogeneity on the plasma grid < +/-10%

Types:

- **Arc sources**, filament based
 - Periplasmatron, magnetic multipole ion source, “bucket source”
- **RF source**

Advantages of the RF source

- No filaments => no lifetime limitations
- Cost saving due to the cheaper power supply
- Power supply on ground potential (separation by a transformer)

=> RF sources used in the second injector of ASDEX-Upgrade since 1997
Arc sources: Periplasmatron ion source (Fontenay-aux-Roses)

- Used at ASDEX
 - Close to the extraction system radially arranged filaments
 - Source back plate as anode
 - Cusp field by two coils around the cathode to compensate stray fields

Arc sources: TFTR source

Upgraded version used at KSTAR (Korea)

Accelerator Part: Circular Aperture Grids
- Designed Energy: 100 keV (H)
- Designed Current: 55 A (H)
- Pulse Length: 300 s
- Aperture Size: 7.6 mm
- Extraction Hole No.: 562
- Beam Size: 12.5 x 45 cm²
- Transparency: 49%
- Beam Divergence: 1 deg

Plasma Chamber: Cusp Bucket
- Current Density: > 210 mA/cm²
- Plasma Volume: 26 x 64 x 32 cm³
- Hydrogen Ion Ratio: > 80% (H⁺)
- Filaments (1.2 mm W): 32
- Max. Arc Power: 120 kW
Arc sources: JT-60-NBI positive ion source

- **Beam energy**: 100keV
- **Beam current**: 40A
- **Beam species**: D/H/3He/4He
- **Extraction area**: 12 × 27 cm²
- D⁺ : D²⁺ : D³⁺ = 90 : 7 : 3
- **No of ion sources**: 28

Arc sources: “Bucket” source

- **Used at**
 - ASDEX-Upgrade, Textor, JET
 - I_{ARC} ≤ 1000 A, U_{ARC} ~ 120 V
 - 24 filaments
 - Water-cooled Copper chamber with confinement magnets
 - B × L × H = 30 × 60 × 19 cm²
 - Arc power 120 kW
PINI extraction system (Plug In Neutral Injector)

Used with the bucket source

Bucket source on the PINI extraction system
RF driven positive ion sources in the NBI of ASDEX-Upgrade

Dimensions
B x H x L = 32 x 19 x 59 cm³

Beams
Hydrogen: 90 A / 100 kW / 55 kV
Deuterium: 65 A / 80 kW / 93 kV
Pulse duration < 10 s

Design of the AUG RF source

- Water cooled Faraday shield to protect the insulator from physical and chemical sputtering
- Power supply 1 MHz/120 kW
- Quartz insulator in a vacuum tank
- Confinement magnets on the source back plate
- Compatible with the PINI extraction system
RF matching

Power supply on ground potential

Beam extraction

- Three electrodes
- AUG: 774 apertures, 8 mm diameter
- Extraction area 390 cm² in 50.66 x 22.8 cm²
- Negative decel voltage reflects electrons from the neutralizer

Child-Langmuir law

\[I = CxV^{3/2} \frac{Z}{\sqrt{M}} \left(\frac{a}{d + x} \right)^2 \]
2nd injector of ASDEX-Upgrade

Proof of reliability:
4 RF sources are used in the NBI of the ASDEX-Upgrade-
Tokamak since 1997
- no maintainance
- no malfunction

Outline
- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- **Negative ion based neutral beam injection**
 - Beam extraction
 - Surface production of negative ions
 - Negative ion sources
 - Experimental results with the RF prototype
 - Giant source for ITER
 - Test facilities
Beam neutralization

Neutralization efficiency depends on energy and ion species

Positive ions
Low neutralization efficiency at high beam energy,
Different for molecular ions

Negative ions
Electron weakly bound (0.75 eV)
=> High neutralization efficiency at high beam energy

Large machines require high energies to achieve the penetration depth,
Current drive more efficient at high beam energy
⇒ up to 1 MeV

⇒ NBI based on negative ions NNBI

The ITER Tokamak

International Thermonuclear Experimental Reactor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{major}</td>
<td>6.2 m</td>
</tr>
<tr>
<td>R_{minor}</td>
<td>2.0 m</td>
</tr>
<tr>
<td>V_{plasma}</td>
<td>840 m3</td>
</tr>
<tr>
<td>I_{plasma}</td>
<td>15 MA</td>
</tr>
<tr>
<td>B_{T}</td>
<td>5.3 T</td>
</tr>
<tr>
<td>P_{fusion}</td>
<td>500 MW</td>
</tr>
<tr>
<td>NBI:</td>
<td>33 MW</td>
</tr>
<tr>
<td>ICRF</td>
<td>20 MW</td>
</tr>
<tr>
<td>ECRH</td>
<td>20 MW</td>
</tr>
</tbody>
</table>

Under construction
In Cadarache, France
ITER Negative Neutral Beam Heating Injector

Two beam lines
16.7 MW per beam line, one source
Pulse Length: 3600 s

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- **Beam extraction**
 - Surface production of negative ions
 - Negative ion sources
 - Experimental results with the RF prototype
 - Giant source for ITER
 - Test facilities
ITER acceleration system

Breakdown voltage ~ (gap length)\(^{1/2}\)
⇒ Multistage acceleration is shorter
⇒ for ITER
 1 MeV in five 200 keV stages

MAMuG
(Multi-aperture and multi-grid)

0.33 A (14.4 mA/cm\(^2\) H\(^-\)) at 937 keV have already been demonstrated at JAEA for 2 s

Secondary particle generation during the acceleration

Stripping
Negative ions destroyed by collisions with the background gas
⇒ Power loss

Stripped electrons and **secondary electrons** are accelerated
⇒ High power load on the grids

Backstreaming (positive) ions
Produced by collisions of electrons and negative ions with the background gas
⇒ High power load on the source back plate

⇒ Limitation of the source pressure
\[p = 0.3 \text{ Pa} \rightarrow f_s = 25\% \]
Negative Ion Extraction

Co-extraction of electrons
Electrons are deflected by small permanent magnets to the extraction grid

To limit the power load on the grid

$$\Rightarrow$$ Limitation of the current of co-extracted electrons

$$j_e / j_{D^-} \leq 1$$

Giant ion sources for the NNBI

Achieved negative ion current densities:

$$j = 200 \text{ A/m}^2 \text{ D}^-$$

(\sim 1/10 of positive ion systems)

ITER: Required for 16.7 MW at 1 MeV

40 A D^-

$$\Rightarrow$$ extraction area 2000 cm²

$$\Rightarrow$$ Giant sources

ITER source
1.9 x 0.9 m²

1280 apertures

0.6 m

1.5 m
Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- **Surface production of negative ions**
 - Negative ion sources
 - Experimental results with the RF prototype
 - Giant source for ITER
 - Test facilities

Volume production of negative ions

\[e + H_2 \rightarrow H_2^+ + e \]

Vibrational excitation

\[e + H_2^+ \rightarrow H + H^- \]

Dissociative attachment

Problems

- Low ion currents < 5 mA/cm²
- High source pressure > 0.6 Pa => high stripping losses
- High current of co-extracted electrons

=> not applicable for the NNBI
Surface production of negative ions

- Conversion rate high at low work function Φ
- Φ can be reduced by coating with alkali metals
 - Φ [eV]
 - Cs: 1.9
 - Rb: 2.08
 - K: 2.24
 - Na: 2.28
 - Li: 2.42
- Φ of Cs on Mo is minimal 1.6 eV at 0.6 mono layer

Cs coating by Cs evaporation into the source
 - Much higher H^- current,
 - Much lower current of co-extracted electrons
 - Lower pressure possible

Destruction of the negative ions

Negative ions are fragile, binding energy of the electron is 0.75 eV

- H^- + e \rightarrow H + 2e
- H^- + H_i^+ \rightarrow neutrals
- H^- + H \rightarrow H + H + e
 or H_2^+ + e

Survival length of H^- only a few cm

⇒ Only negative ions produced on the plasma grid can be extracted
⇒ Divide source by a magnetic filter field in ‘hot’ plasma and ‘cold’ extraction zone
Modelling results of the negative ion production

- Negative ion flux from the PG saturates at high atomic density due to space charge limitation
- Flux of D⁻ ions lower than of H⁺ ions under the same plasma conditions
- Extraction probability of D⁻ ions lower than of H⁺ ions under the same plasma conditions

Outline

- Plasma heating by neutral beam injection
- Positive ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- **Negative ion sources**
 - Experimental results with the RF prototype
 - Giant source for ITER
 - Test facilities
Requirements for the ITER NBI

Heating beams HNB
33 MW injected power
2 (later 3) tangential injectors
1 MeV
3600 s
I(D⁻) = 40 A (one beamline)

Diagnostic beam DNB by IPR, India
3 MW, 100 keV, negative ions!
I(H+) = 60 A, same source type

Requirements for the HNB ion sources
Accelerated current density
20 mA/cm² (D⁻)
24 mA/cm² (H+)
\(\frac{I_e}{I_{ion}} < 1 \), at 0.3 Pa
Durations: 3600s (D⁻), 400s (H+)

NNBI systems

Operating NNBI systems
Japan
JT-60 U, JAEE (Japan Atomic Energy Agency)
LHD, (Large helical device), NIFS (Nat. Inst. For Fusion Science)

Europe
IPP Garching, Germany

Future
RFX, Padua
ITER, Cadarache
Kamaboko source (Japan)

Initially part of the reference design of ITER
Concept of the semicylindrical chamber shape
• Maximize plasma volume
• Minimize plasma loss area

⇒ High negative ion production efficiency at low pressure was expected

Tested at
CEA (Cadarche) and
JT-60

JT60 source

Kamaboko type
2/3 of ITER source size
In operation since 1996
~50 high-current filaments
• limited lifetime (100 h)
• frequent remote maintenance, every 2-3 months

Design: two sources
22 A, 500 keV, 10 s D⁻ ion beams

Achieved (2010):
17.4 A or 13 mA/cm², 400 keV, 0.7 s
10 A, 360 keV, 25 s
Problem: voltage holding
JT-60 negative ion beam line

(Hanada, 2006)

LHD negative ion source

(Takeiri, 2010)

Three injectors with two sources each
Operating since 1998

Design: 30 A, 180 keV, 1 s (one source)
Achieved: 37 A or 340 mA/cm², 190 keV, 1.6 s
LHD negative ion source

Problem:
High power load on the grounded grid

Solution
Slots instead of apertures in the grounded grid

Plasma Grid (PG)
Extraction Grid (EG)
Steering Grid (SG)
Multi-Slot Grounded Grid (MSGG)

Photos of the Constructed LHD Ion Source

(Tsumori, 2009)
IPP RF Source: Working principle

- Cs evaporator
- Water cooled Faraday screen
- Gas feed

Design of the IPP prototype RF source

- Operated on the long pulse testbed **MANITU**
- and the short pulse testbeds **Batman** (< 5s) and **Robin**, IPR, India

- Driver Ø 24.4 cm
- Gas feed
- Quartz or Al₂O₃ and internal Faraday shield
- RF coil, 1 MHz, 100 kW SF₆ insulated

- Expansion volume 31x 59 x19 cm³
- U_{extr} < 9 kV
- U_{acc} = 20 kV

Plasma grid (~ -20 kV)
- pos. bias (10 – 20 V) for electron reduction
- at 150 °C – 250 °C for optimum Cs coverage
Driver design

Used in all NNBI RF sources
High power density $P_{\text{RF}}/V \sim 10 - 15 \text{ kW/l}$

RF matching

Self-excited 1 MHz oscillator
+ Frequency matching possible
 => no remote controlled capacitors at the source
- Limited frequency stability
Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- **Experimental results with the RF prototype**
- Giant source for ITER
- Test facilities

Cs dynamics: Reproducibility of beam currents

Volume production of **positive** Hydrogen ions

Surface production of **negative** Hydrogen ions

4 positive ion sources of the AUG NBI, max. current 100 A

Reproducibility very good

Two months experimental campaign with the negative ion prototype source, max. current 4 A

Poor reproducibility
Cs dynamics: Work function measurements

Minimum at 0.6 mono layer not achievable under vacuum conditions of the source (10^{-6} mbar)

\[\text{WF of Cs bulk material } 2.14 \text{ eV}\]

WF degrades under after stop of the evaporation

\[\text{=> Detoriation by impurities in the background gas (Cu, O}_{2}, \text{ H}_{2}\text{O, ...})}\]

\[\text{=> Constant Cs evaporation required}\]

CS handling: Source conditioning at BATMAN (short pulses)

Conditioning procedure:

Optimize \(t_{\text{Pulse}}, t_{\text{Pause}}, \text{Cs evaporation rate} \)

\[\Rightarrow \text{reduction of electron current, increasing ion current}\]

- Faster conditioning at low background pressure
- Source body temperature 35\(^\circ\)
- Plasma grid temperature >140\(^\circ\)
Long pulse conditioning at MANITU

- Large variation of the currents at the same parameters
- Long-term degradation by impurities

Electron currents in long pulses

- Ion currents more stable than electron currents,
- but saturate at high power
- Electron currents increase steeper at high power

⇒ In long pulses high load on the extraction grid
⇒ Reduction of the power
⇒ Lower ion currents

Electron current in long pulses correlated to Cs dynamics
(Cs released from inner surfaces of the source)
Minimizing the current of co-extracted electrons

1. Conditioning
Plasma cleaning of the plasma grid surface
+ Cs evaporation

2. Plasma grid temperature
RF source: Minimum temperature > 150° (?),
• up to 220° no significant change,
• in arc sources much higher plasma grid temperature required > 250°
=> Effect of tungsten coating ?

3. Positive biasing the plasma grid with respect to the source
• Electron current more sensitive
• Dependence on the bias voltage is different according to the Cs conditions

Long pulse performance of one experimental campaign

Hydrogen:
20 - 30 mA/cm²
Pulse length ITER 400s

Deuterium:
10 - 20 mA/cm²
Pulse length ITER 3600s
Higher electron current (?)
One hour pulse in Deuterium

0.3 Pa, 45 kW, $J_{\text{ion}} = 10 \text{ mA/cm}^2$
Stable long pulses at reduced power

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- **Giant source for ITER**
- Test facilities
In 2007 RF Source was chosen for the reference design of ITER

Reasons for the decision:

- No regular maintenance intervals necessary
 Important in the radioactive environment
- Simpler and possibly cheaper
 - much fewer components on HV
 - much fewer vacuum feedthroughs
- **No tungsten** coating of the walls
 => Lower Cs consumption
- **Proof of reliability** by 10 years operation of RF sources in the positive ion based NBI of the AUG tokamak
- Required **H/D current densities** have been achieved with a small scale prototype at low source pressure (<0.3 Pa) in short pulses (> 4s) on the test facility BATMAN (IPP)

Further development with large RF sources

Test of

- the modular concept: multi driver – large expansion volume,
- RF power supply with two drivers in series,
- new filter field concepts,
- optimized extraction system

Benefits of large sources

- Larger driver diameter reduces neutral depletion,
- Expanding plasmas of the multi drivers overlap => Higher plasma density in the expansion chamber = higher efficiency
Extrapolation to the ITER Source

1 Driver
0.59 x 0.31 m²

4 Drivers
1.0 x 0.9 m²

8 Drivers
1.9 x 0.9 m²

Batman 5s
Manitu cw
Robin 5s, IPR

Radi without extraction
ELISE

HNB (RFX, Italy), 58 A D⁻
DNB (IPR, India), 70 A H⁻

RADI source

• About full width and half the height of ITER source (0.76 x 0.8 m²)
• Two drivers in series supplied by one 1MHz/180kW RF generator
• No Cs evaporation
• No beam extraction

Achieved
• 2 x 130 kW operation
• Homogenous plasma density
• Low pressure operation 0.2 - 0.3 Pa
New filter field concepts for the ITER Source

Prototype source
Filter field generated by permanent magnets close to the PG

Large source
ITER: Current through the plasma grid (4kA)
=> lower field close to the PG,
larger range
=> new concepts to be tested

ELISE ion source
(Extraction from a Large Ion Source Experiment)
ELISE extraction system

4 beamlet groups

ELISE: Shape of plasma grid apertures

Chamfered apertures
- Less collisions with particles
- Less losses on the electrode
=> Higher extraction probability
Assembly of the ELISE source

Commissioning in June 2012
RADI and MANITU shut down in August 2011

Outline

• Plasma heating by neutral beam injection
• Positive ion sources for Neutral Beams
• Negative ion based neutral beam injection
• Beam extraction
• Surface production of negative ions
• Negative ion sources
• Experimental results with the RF prototype
• Giant source for ITER
• Test facilities
NNBI test facilities

<table>
<thead>
<tr>
<th></th>
<th>ITER (rf)</th>
<th>LHD (arc)</th>
<th>JAEA JT60U (arc)</th>
<th>JAEA MV TF (arc)</th>
<th>IPP (rf source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>D·</td>
<td>H·</td>
<td>D·</td>
<td>H·</td>
<td>H·</td>
</tr>
<tr>
<td>Energy</td>
<td>MeV</td>
<td>1000</td>
<td>180</td>
<td>400</td>
<td>937</td>
</tr>
<tr>
<td>Voltage holding</td>
<td>MV</td>
<td>1000</td>
<td>190</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Source height</td>
<td>m</td>
<td>1.95</td>
<td>1.45</td>
<td>1.22</td>
<td>0.59</td>
</tr>
<tr>
<td>Source width</td>
<td>m</td>
<td>1.55</td>
<td>0.35</td>
<td>0.64</td>
<td>0.3</td>
</tr>
<tr>
<td>No. of apertures</td>
<td></td>
<td>1280</td>
<td>770</td>
<td>1080</td>
<td></td>
</tr>
<tr>
<td>Accelerated current</td>
<td>A</td>
<td>40</td>
<td>30</td>
<td>17</td>
<td>0.33</td>
</tr>
<tr>
<td>Source power</td>
<td>kW</td>
<td>800</td>
<td>180</td>
<td>350</td>
<td>100</td>
</tr>
<tr>
<td>Extracted current density</td>
<td>A/m²</td>
<td>285</td>
<td>250</td>
<td>144</td>
<td>280</td>
</tr>
<tr>
<td>Pulse length</td>
<td>s</td>
<td>3600</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

ELISE testbed

- **Extraction area**: 1000 cm²
- **Acceleration voltage**: 60 kV
- **Extraction voltage**: <12 kV
- **Ion current**: 20 A
- **RF power**: 2 x 180 kW
- **Plasma on time**: 3600 s
- **Beam extraction**: 10 s every 180 s

Gate valve

=> no deterioration of Cs during cryo regeneration
ITER beam test facilities

- ELISE (IPP Garching): Half-size ITER-type source in cw operation with 60 kV/10s beam extraction.
 → to assess spatial uniformity of negative ion flux, validate or alter source concept
- SPIDER (RFX, Padua): Full size ITER source with full extraction voltage 100 keV, 3600s → to validate or alter source and extractor
- MITICA (RFX, Padua): Full size ITER source, 1 MeV, 3600s
 → to validate or alter accelerator and beamline components
- DNB source test facility (Ghandinagar, India), Full size ITER source, 100 keV, 3600s

Summary

Positive ion sources have reached a high degree of performance and reliability.

Future fusion reactors require giant high power ion sources in which the negative ions are produced on Cs-adsorbed surfaces with low work function.

The present development concentrates on the ITER NBI source which will produce 40A /1MeV beams for 3600s. The RF source was chosen for the ITER reference design due to the maintenance free operation and because the individual target values have been achieved with a small prototype.

The further development of sources of ITER relevant size will be carried out in the next years on new large testbeds at IPP Garching and RFX Padua.