Ion Sources for Fusion W. Kraus Max-Planck-Institut für Plasmaphysik **EURATOM Association** Boltzmannstr. 2, D-85748 Garching 2. June 2012 CERN Accelerator School – Ion Sources Senec, Slovakia Ion sources in fusion devices Ion sources are used in neutral beam injection systems (NBI) Neutral atoms can penetrate through the confining magnetic field. **Radio Frequency Heating** Used for Neutral beam heating 0000 **Current drive Diagnostics beams Ohmic Heating** Neutral Beam Injection

3

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

W. Kraus

2. June 2012

CERN Accelerator School – Ion Sources

NBI: the work horse

NBI heating is dominant in most large past, present, and planned tokamaks

	R ₀	а	I _p	B _t	Installed heating power (MW)				
	(m)	(m)	(MÅ)	(T)	P-NBI	N-NBI	ECRH	ICRH	LH
ITER	6.2	2.0	15	5.3	-	33	20	20	-
JET	2.96	1.25	4.8	3.45	34*	-	-	10	7
JT-60U	3.4	1.1	5	4.2	40	3	4	7	8
JT-60SA	2.97	1.17	5	2.25	24	10	7	-	-
TFTR	2.4	0.8	2.2	5	40	-	-	11	-
EAST	1.7	0.4	1.0	3.5	-	-	0.5	3	4
DIII-D	1.67	0.67		2.1	20	-	5	4	-
ASDEX Upgrade	1.65	0.65	1.2	3.1	20	-	6	8	-

*recently upgraded

Interaction of fast neutrals with the plasma

- ionisation by collisions with plasma electrons and ions
- · drift of the fast ions in the magnetic field
- collisions of the fast ions with plasma ions and electrons => slow-down and scattering
- charge exchange collisions with background neutrals

W. Kraus

2. June 2012

CERN Accelerator School - Ion Sources

5

Penetration depth

Attenuation of the beam in an uniform Hydrogen plasma

$$I = I_0 e^{(-x/\lambda)}$$

Approximation for the absorption length for ionisation n in 10¹⁹m⁻³, A in amu, E in keV

$$\lambda = \frac{E}{18 \cdot n \cdot A} [m]$$

Penetration depth depends on the energy Example AUG: 100 keV D beam, $n_e = 5x10^{19}$ m⁻³ => λ = 0.5 m

Fraction not absorbed by the plasma : shine-through determines minimum plasma density

Neutral Beam Current Drive (NBCD)

Why Current Drive (CD) ?

- Tokamaks: Plasma current is driven inductively (principle: transformer).
 => pulsed operation
 - \Rightarrow for reactor: pulsed energy production, pulsed forces and heat loads on components \rightarrow reduced lifetime. Therefore aim (e.g. on ITER)
 - "stationary tokamak" completely non-inductive CD
 - enhanced pulse length significant part of I_p non-inductive CD
- Local modification of plasma current profile j_P(r) to improve plasma confinement (internal transport barriers, improved H-mode) and/or plasma stability (NTM stabilisation)
- Each of the heating systems foreseen for ITER is able to drive plasma current
 - \Rightarrow "Heating & Current Drive Systems"

Principle - Driving Toroidal Plasma Current by NBI

top view

NBI[↑]I

The toroidally circulating fast ions - when slowing down - represent a

current ("fast ion current")

This fast ion current is modified by the interaction of the fast ions with the plasma, but generally some net current remains:

 \rightarrow Neutral beam driven current I_{NBCD}

Current drive efficiency

 $\eta_{CD} = \frac{I_{NBCD} n_e R}{P_{dep}}$

At present about 0.2 – 0.3

W. Kraus

R major radius P_{dep} deposition power

> CERN AcceleratoruSchoolneerlog, PSour Cesember 2009 // A. Stäbler -9-9

Neutral Beam Systems

2. June 2012

Neutral beams are produced by:

- · Powerful ion beam by the ion source and the extraction system
- · Neutralisation by charge exchange collisions of the fast ions with the cold gas in the neutralizer
- Not neutralised part of the beam is deflected to the ion dump
- · The beam power is measured by a calorimeter

NBI↑↓Ip

W. Kraus

2. June 2012

CERN Accelerator School - Ion Sources

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

13

Positive ion sources

Requirements:

Beam species Beam current

Current density

 H_{n}^{+}, D_{n}^{+}

30 – 90 A

230 - 300 mA/cm²

- No filaments => no lifetime limitations
- · Cost saving due to the cheaper power supply
- Power supply on ground potential (separation by a transformer)

=> RF sources used in the second injector of ASDEX-Upgrade since 1997

Arc sources: Periplasmatron ion source (Fontenay-aux-Roses)

Used at **ASDEX**

- · Close to the extraction system radially arranged filaments
- Source back plate as anode
- Cusp field by two coils around the cathode to compensate stray fields

W. Kraus

2. June 2012

CERN Accelerator School - Ion Sources

17

Arc sources: TFTR source

Upgraded version used at KSTAR (Korea) Accelerator Part : Circular Aperture Grids - Designed Energy 100 keV (H) - Designed Current 55 A (H)

Pulse Length 300 s
Aperture Size 7.6 mm
Extraction Hole No. 562
Beam Size 12.5 x 45 cm²
Transparency 49 %
Beam Divergence 1 deg
Plasma Chamber : Cusp Bucket

- Current Density > 210 mA/cm²
- Plasma Volume 26 x 64 x 32 cm³
 Hydrogen Ion Ratio > 80 % (H⁺)
 Filaments (1.2 mm W) 32
- Max. Arc Power 120 kW

18

Arc sources: "Bucket" source

Used at

ASDEX-Upgrade, Textor, JET

 $I_{ARC} \le 1000 \text{ A}, \text{ } U_{ARC} \sim 120 \text{ V}$

- 24 filaments
- Water-cooled Copper chamber with confinement magnets
- B x L x H = 30 x 60 x 19 cm²
- Arc power 120 kW

Used with the bucket source

Dimensions

 $B x H x L = 32 x 19 x 59 cm^3$

Beams

Hydrogen: 90 A / 100 kW / 55 kV Deuterium: 65 A / 80 kW / 93 kV Pulse duration < 10 s

W. Kraus

2. June 2012

CERN Accelerator School - Ion Sources

23

Design of the AUG RF source

- Water cooled Faraday shield to protect the insulator from physical and chemical sputtering
- Power supply 1 MHz/120 kW
- Quartz insulator in a vacuum tank
- Confinement magnets on the source back plate
- Compatible with the PINI extraction system

 Negative decel voltage reflects electrons from the neutralizer

26

Proof of reliability: 4 RF sources are used in the NBI of the ASDEX-Upgrade-Tokamak since 1997

- no maintainance
- no malfunction

W. Kraus

2. June 2012

CERN Accelerator School - Ion Sources

27

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

Neutralization efficiency depends on energy and ion species

Positive ions

Low neutralization efficiency at high beam energy, Different for molecular ions

Negative ions

Electron weakly bound (0.75 eV) => High neutralization efficiency at high beam energy

Large machines require high energies to achieve the penetration depth, Current drive more efficient at high beam energy \Rightarrow up to 1 MeV

=> NBI based on negative ions NNBI

W. Kraus	2. June 2012	CERN Accelerator School – Ion Sources	29

The ITER Tokamak

International Thermonuclear Experimental Reactor

R _{major}	6.2 m					
R _{minor}	2.0 m					
V _{plasma}	840 m ³					
I _{plasma}	15 MA					
B _{Tor}	5.3 T					
P _{fusion}	500 MW					
NBI:	33 MW					
ICRF	20 MW					
ECRH	20 MW					
Under construction						
In Cadarache, France						

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

Secondary particle generation during the acceleration

IPP

Stripping

Negative ions destroyed by collisions with the back ground gas \Rightarrow Power loss

Stripped electrons and **secondary electrons** are accelerated \Rightarrow High power load on the grids

Backstreaming (positive) ions

Produced by collisions of electrons and negative ions with the back ground gas => High power load on the source back plate

=> Limitation of the source pressure

p = 0.3 Pa
$$\rightarrow$$
 f_s = 25%

Co-extraction of electrons

Electrons are deflected by small permanent magnets to the extraction grid

To limit the power load on the grid

=> Limitation of the current of co-extracted electrons

j_e/j_D- ≤ 1

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

W.	Kraus
٧٧.	riaus

2. June 2012

CERN Accelerator School – Ion Sources

Volume production of negative ions

Problems

- Low ion currents < 5 mA/cm²
- High source pressure > 0,6 Pa => high stripping losses
- High current of co-extracted electrons

=> not applicable for the NNBI

37

Destruction of the negative ions

Negative ions are fragile, binding energy of the electron is 0,75 eV

electron detachment for **hot electrons** with T_e > 2 eV mutual neutralisation associative detachment

Survival length of H⁻ only a few cm

- ⇒ Only negative ions produced on the plasma grid can be extracted
- ⇒ divide source by a magnetic filter field in 'hot' plasma and 'cold' extraction zone

- Negative ion flux from the PG saturates at high atomic density due to space charge limitation
- Flux of D⁻ ions lower than of H⁻ ions under the same plasma conditions
- Extraction probability of D⁻ ions lower than of H⁻ ions under the same plasma conditions

W. Kraus	2. June 2012	CERN Accelerator School – Ion Sources	41

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

Heating beams HNB

33 MW injected power
2 (later 3) tangential injectors
1 MeV
3600 s
I(D⁻)= 40 A (one beamline)

Diagnostic beam DNB by IPR, India

3 MW, 100 keV, negative ions! $I(H^-) = 60 A$, same source type

Requirements for the HNB ion sources Accelerated current density 20 mA/cm² (D⁻) 24 mA/cm² (H⁻)

j_{el}/j_{ion} <1, at 0.3 Pa Durations: 3600s (D⁻), 400s (H⁻)

W. Kraus

2. June 2012

CERN Accelerator School - Ion Sources

43

NNBI systems

Operating NNBI systems Japan JT-60 U, JAEA (Japan Atomic Energy Agency)

LHD, (Large helical device), NIFS (Nat. Inst. For Fusion Science)

Europe

IPP Garching, Germany

Future

RFX, Padua ITER, Cadarache Initially part of the reference design of ITER

Concept of the semicylindical chamber shape

- Maximize plasma volume
- Minimize plasma loss area
- ⇒ High negative ion production efficiency at low pressure was expected

CEA (Cadarche) and

Arc Chamber Extractor Grounded Grid D-

W. Kraus

Tested at

JT-60

2. June 2012

CERN Accelerator School – Ion Sources

45

JT60 source

Screen ring Spark gap stress ring Plasma generator 2| m Cesium oven filament FRP ESG GRÌG A2G A1G insulator Accelerator (Hanada, 2006)

Kamaboko type 2/3 of ITER source size In operation since 1996 ~50 high-current filaments

- limited lifetime (100 h)
- frequent remote maintenance, every 2-3 months

Design: two sources 22 A, 500 keV, 10 s D⁻ ion beams **Achieved (2010):** 17.4 A or 13 mA/cm², 400 keV, 0.7 s 10 A, 360 keV, 25 s

Problem: voltage holding

48

Photos of the Constructed LHD Ion Source

IPP

Used in all NNBI RF sources High power density $P_{RF}/V \sim 10 - 15 \ kW/l$

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

W. Kraus

2. June 2012

CERN Accelerator School – Ion Sources

Cs dynamics: Reproducibility of beam currents

Volume production of **positive** Hydrogen ions

1. RF source 3. RF sourc ⊞ Δ 4. RF sou 300 Extracted Ion Current Density, mA/cm² 250 200 150 100 50 0 0 20 40 60 80 100 120 RF Power, kW

4 positive ion sources of the AUG NBI, max. current 100 A

Reproducibility very good

Surface production of **negative** Hydrogen ions

Two months experimental campaign with the negative ion prototype source, max. current 4 A **Poor reproducibility**

55

CS handling: Source conditioning at BATMAN (short pulses)

ШL

- · Large variation of the currents at the same parameters
- Long-term degradation by impurities

Electron currents in long pulses

- Ion currents more stable than electron currents,
- but saturate at high power
- Electron currents increase steeper at high power
- \Rightarrow In long pulses high load on the extraction grid
- \Rightarrow Reduction of the power
- \Rightarrow Lower ion currents

Electron current in long pulses correlated to Cs dynamics (Cs released from inner surfaces of the source)

1. Conditioning

Plasma cleaning of the plasma grid surface

+ Cs evaporation

2. Plasma grid temperature

RF source: Minimum temperature > 150°(?), • up to 220° no significant change,

 in arc sources much higher plasma grid temperature required > 250°
 => Effect of tungsten coating ?

3. Positive biasing the plasma grid

with respect to the source

• Electron current more sensitive

• Dependence on the bias voltage is different according to the Cs conditions

W. Kraus

2. June 2012

CERN Accelerator School – Ion Sources

61

IJI

Long pulse performance of one experimental campaign

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

63

Reasons for the decision:

- No regular maintenance intervals necessary
 Important in the radioactive environment
- Simpler and possibly cheaper
 - much fewer components on HV
 - much fewer vacuum feedthroughs
- No tungsten coating of the walls
 - => Lower Cs consumption
- Proof of reliability by 10 years operation of RF sources in the positive ion based NBI of the AUG tokamak
- Required H⁻/D⁻ current densities have been achieved with a small scale prototype at low source pressure (<0.3 Pa) in short pulses (> 4s) on the test facility BATMAN (IPP)

Design of the ITER RF source

W. Kraus

2. June 2012

CERN Accelerator School – Ion Sources

65

Further development with large RF sources

Test of

- the modular concept: multi driver large expansion volume,
- RF power supply with two drivers in series,
- new filter field concepts,
- optimized extraction system

Benefits of large sources

- · Larger driver diameter reduces neutral depletion,
- Expanding plasmas of the multi drivers overlap => Higher plasma density in the expansion chamber = higher efficiency

RADI source

- About full width and half the height of ITER source (0.76 x 0.8 m²)
- Two drivers in series supplied by one 1MHz/180kW RF generator
- No Cs evaporation
- No beam extraction

Achieved

- 2 x 130 kW operation
- Homogenous plasma density
- Low pressure operation 0.2 0.3 Pa

Prototype source

Filter field generated by permanent magnets close to the PG

Large source

ITER: Current through the plasma grid (4kA)

=> lower field close to the PG,

larger range

=> new concepts to be tested

W. Kraus

- 2. June 2012
- **CERN Accelerator School Ion Sources**

69

ELISE ion source (Extraction from a Large Ion Source Experiment)

4 beamlet groups

Collisions

- - -

14

Loss on electrode

10 12 EG

GG

n:_

40

20

0

0

2

action

4

ı 6

8

Starting energy [eV]

Commissioning in June 2012 RADI and MANITU shut down in August 2011

W. Kraus

2. June 2012

CERN Accelerator School – Ion Sources

73

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Surface production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

		ITER (rf)	LHD (arc)	JAEA JT60U (arc)		JAEA MV TF (arc)	IPP (rf source)	
Species		D-	H	D-	H	H	H	D-
Energy	MeV	1000	180	400		937		
Voltage holding	MV	1000	190	50	00	1000		
Source height	m	1.95	1.45	1.22			0.59	
Source width	m	1.55	0.35	0.64			0.3	
No. of apertures		1280	770	1080				
Accelerated current	Α	40	30	17		0.33	1.	.4
Source power	kW	800	180	350			100	
Extracted current density	A/m ²	285	250			144		280
Pulse length	s	3600	2		2	2	3600	4

W. Kraus

2. June 2012

CERN Accelerator School – Ion Sources

75

IJI

ELISE testbed

Extraction area	1000 cm ²			
Acceleration voltage	60 kV			
Extraction voltage	<12 kV			
lon current	20 A			
RF power	2 x 180 kW			
Plasma on time Beam extraction	3600 s 10 s every 180 s			

Gate valve

=> no deterioration of Cs during cryo regeneration

- ELISE (IPP Garching): Half-size ITER-type source in cw operation with 60 kV/10s beam extraction.
 - \rightarrow to assess spatial uniformity of negative ion flux, validate or alter source concept
- SPIDER (RFX, Padua): Full size ITER source with full extraction voltage 100 keV, 3600s \rightarrow to validate or alter source and extractor
- MITICA (RFX, Padua): Full size ITER source, 1 MeV, 3600s
 → to validate or alter accelerator and beamline components
- DNB source test facility (Ghandinagar, India), Full size ITER source, 100 keV, 3600s

Summary

Positive ion sources have reached a high degree of performance and reliability.

Future fusion reactors require giant high power ion sources in which the negative ions are produced on Cs-adsorbed surfaces with low work function.

The present development concentrates on the ITER NBI source which will produce 40A /1MeV beams for 3600s. The RF source was chosen for the ITER reference design due to the maintenance free operation and because the individual target values have been achieved with a small prototype.

The further development of sources of ITER relevant size will be carried out in the next years on new large testbeds at IPP Garching and RFX Padua.