

Ion Sources for Fusion

W. Kraus

Max-Planck-Institut für Plasmaphysik EURATOM Association Boltzmannstr. 2, D-85748 Garching

Ion sources are used in neutral beam injection systems (NBI)

Neutral atoms can penetrate through the confining magnetic field.

Used for **Neutral beam heating Current drive Diagnostics beams**

- **Plasma heating by neutral beam injection**
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

NBI heating is dominant in most large past, present, and planned tokamaks

*recently upgraded

Interaction of fast neutrals with the plasma

- ionisation by collisions with plasma electrons and ions
- drift of the fast ions in the magnetic field
- collisions of the fast ions with plasma ions and electrons => slow-down and scattering
- charge exchange collisions with background neutrals

Penetration depth

Attenuation of the beam in an uniform Hydrogen plasma $I = I_0 e^{(\pi i/L)}$ Approximation for the absorption **Neutral** length for ionisation beam n in 10¹⁹m⁻³, A in amu, E in keV

$$
\lambda = \frac{E}{18 \cdot n \cdot A} [m]
$$

Penetration depth depends on the energy Example AUG: 100 keV D beam, $n_e = 5x10^{19}$ m⁻³ = λ = 0.5 m

Fraction not absorbed by the plasma : shine-through determines minimum plasma density

Slowing down – power to the ions and electrons

Change of energy of a fast ion

Stopping by ions and electrons is equal at the **"Critical energy" E_c**

 E_c depends on the electron temperature Lower energy of $E_0/2$ and $E_0/3$ $=$ > lon heating dominates for E_0 < 100kV

Why Current Drive (CD) ?

- **Tokamaks:** Plasma current is driven inductively (principle: transformer). => pulsed operation
	- \Rightarrow for reactor: pulsed energy production, pulsed forces and heat loads on components \rightarrow reduced lifetime. Therefore aim (e.g. on ITER)
		- "stationary tokamak" completely non-inductive CD
		- enhanced pulse length \blacksquare significant part of I_p non-inductive CD
- Local modification of plasma current profile − $j_P(r)$ to improve plasma confinement *(internal transport barriers, improved H-mode)* and/or plasma stability *(NTM stabilisation)*
- **Each of the heating systems foreseen for ITER is able to drive plasma current**

⇒ "Heating & Current Drive Systems"

Principle - Driving Toroidal Plasma Current by NBI

The toroidally circulating fast ions - when slowing down - represent a

current ("fast ion current")

This fast ion current is modified by the interaction of the fast ions with the plasma, but generally some net current remains:

→ **Neutral beam driven current**

INBCD **Current drive efficiency**

$$
\eta_{CD} = \frac{I_{\text{NBCD}} n_{e} R}{P_{\text{dep}}}
$$

R major radius P_{den} deposition power

At present about 0.2 – 0.3

Neutral Beam Systems

Neutral beams are produced by:

- Powerful ion beam by the ion source and the extraction system
- Neutralisation by charge exchange collisions of the fast ions with the cold gas in the neutralizer
- Not neutralised part of the beam is deflected to the ion dump
- The beam power is measured by a calorimeter

The ASDEX Upgrade NBI System (Garching, Germany)

NBI system of JET (Joint European Torus, Culham, UK)

Residual Ion Dump of ASDEX Upgrade

Outline

- Plasma heating by neutral beam injection
- **Positive Ion sources for Neutral Beams**
- Negative ion based neutral beam injection
- Beam extraction
- Production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

Requirements:

Types:

• **Arc sources**, filament based

Periplasmatron,

magnetic multipole ion source, "bucket source"

• **RF source**

Arc and RF sources

Advantages of the RF source

- No filaments => no lifetime limitations
- Cost saving due to the cheaper power supply
- Power supply on ground potential (separation by a transformer)

=> RF sources used in the second injector of ASDEX-Upgrade since 1997

Arc sources: Periplasmatron ion source (Fontenay-aux-Roses)

Used on **ASDEX** (20 A, 55 keV)

- Close to the extraction system radially arranged filaments
- Source back plate as anode
- Cusp field by two coils around the cathode to compensate stray fields and for confinement of the electrons

Upgraded version used at KSTAR (Korea) Accelerator Part : Circular Aperture Grids

Plasma Chamber : Cusp Bucket

- Current Density > 210 mA/cm2
- $-$ Plasma Volume 26 x 64 x 32 cm³
- $-$ Hydrogen Ion Ratio \rightarrow 80 % (H⁺)
- Filaments (1.2 mm W) 32
- Max. Arc Power 120 kW

Arc sources: JT-60-NBI positive ion source

Used at **ASDEX-Upgrade, Textor, JET**

 $I_{\text{ARC}} \leq 1000 \text{ A}, U_{\text{ARC}} \sim 120 \text{ V}$

- 24 filaments
- Water-cooled Copper chamber with confinement magnets
- $B \times L \times H = 30 \times 60 \times 19$ cm²
- Arc power 120 kW

"Tent" filter to reduce the electron temperature

 \Rightarrow H⁺/D⁺ fraction

PINI extraction system (Plug In Neutral Injector)

Used with the bucket source

Bucket source on the PINI extraction system

Dimensions

 $B \times H \times L = 32 \times 19 \times 59$ cm³ (=Bucket source)

Beams

Hydrogen: 90 A / 100 kW / 55 kV **Deuterium:** 65 A / 80 kW / 93 kV **Pulse duration** < 10 s

- Water cooled **Faraday shield** to protect the insulator from physical and chemical sputtering
- Power supply 1 MHz/120 kW
- Quartz insulator in a vacuum tank
- Confinement magnets on the source back plate
- Compatible with the PINI extraction system

RF matching

Beam extraction

- Three electrodes
- AUG: 774 apertures, 8 mm diameter
- Extraction area 390 cm² in 50.66 x 22.8 cm²
- Negative decel voltage reflects electrons from the neutralizer

Child-Langmuir law

=> Maximal extractable current

$$
I = C x V^{3/2} \sqrt{\frac{Z}{M}} \left(\frac{a}{d+x}\right)^2
$$

Proof of reliability:

- 4 RF sources are used in the NBI of the
- ASDEX-Upgrade-
- Tokamak since 1997
	- no maintainance
	- no malfunction

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- **Negative ion based neutral beam injection**
- Beam extraction
- Production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

Neutralization efficiency depends on energy and ion species

Positive ions

Low neutralization efficiency at high beam energy, Different for molecular ions

Negative ions

Electron weakly bound (0.75 eV) => High neutralization efficiency at high beam energy

Large machines require high energies to achieve the penetration depth, Current drive more efficient at high beam energy \Rightarrow up to 1 MeV

⇒**NBI based on negative ions "NNBI"**

The ITER Tokamak

International **T**hermonuclear **E**xperimental **R**eactor

Under construction In Cadarache, France

ITER Negative Neutral Beam Heating Injector

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- **Beam extraction**
- Production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

ITER acceleration system

Breakdown voltage \sim (gap length)^{1/2} ⇒ Multistage acceleration is shorter \Rightarrow for ITER

1 MeV in five 200 keV stages

MAMuG

(Multi-aperture and multi-grid)

0.33 A (14.4 mA/cm² H⁻) at 937 keV have already been demonstrated at JAEA for 2 s

Secondary particle generation during the acceleration

Stripping

Negative ions destroyed by collisions with the back ground gas ⇒ Power loss

Stripped electrons and **secondary electrons** are accelerated

 \Rightarrow High power load on the grids

Backstreaming (positive) ions

Produced by collisions of electrons and negative ions with the back ground gas => High power load on the source back plate

 => Limitation of the source pressure

 $p = 0.3$ Pa \rightarrow f_s = 25%

Co-extraction of electrons

Electrons are deflected by small permanent magnets to the extraction grid

To limit the power load on the grid

=> Limitation of the current of co-extracted electrons

 j_e/j_D - ≤ 1

Giant ion sources for the NNBI

Achieved negative ion current densities:

j = 200 A/m2 D[−]

(~1/10 of positive ion systems)

ITER: Required for 16.7 MW at 1 MeV

40 A D-

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- **Production of negative ions**
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

Volume production of negative ions

Problems

- Low ion currents ≤ 5 mA/cm²
- High source pressure > 0,6 Pa => high stripping losses
- High current of co-extracted electrons

=> **not applicable for the NNBI**

Surface production of negative ions

H⁰, H_n⁺ + surface-e \implies H⁻

- Conversion rate high at low work function Φ
- Φ can be reduced by coating with alkali metals $Φ$ [eV]

 \cdot Φ of Cs on Mo is minimal 1,6 eV at **0.6 mono layer**

Cs coating by Cs evaporation into the source

- ⇒ Much higher H⁻ current,
	- **Much lower current of co-extracted electrons**
	- **lower pressure possible**

Destruction of the negative ions

Negative ions are fragile, binding energy of the electron is 0,75 eV

electron detachment for hot electrons with $T_e > 2$ eV *mutual neutralisation associative detachment*

Survival length of H⁻ only a few cm

- ⇒ **Only negative ions produced on the plasma grid can be extracted**
- ⇒ **divide source by a magnetic filter field in 'hot' plasma and 'cold' extraction zone**

• Production by surface conversion of H⁰ atoms greater than of H_n^+ ions

• Negative ion flux from the PG saturates at high atomic density due to space charge limitation => plasma needed

• Flux of D⁻ ions lower than of H⁻ ions under the same plasma conditions

• Extraction probability of D⁻ ions lower than of H- ions under the same plasma **Conditions**

=> lower D- current

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Production of negative ions
- **Negative ion sources**
- Experimental results with the RF prototype
- Giant source for ITER
- Test facilities

Operating NNBI systems

Japan

JT-60 U, JAEA (Japan Atomic Energy Agency) LHD, (Large helical device), NIFS (Nat. Inst. For Fusion Science)

Europe

IPP Garching, Germany

Future

RFX, Padua ITER, Cadarache

Kamaboko source (Japan)

Initially part of the reference design of ITER

Semicylindical chamber shape

⇒ To minimize plasma loss area ⇒ High negative ion production efficiency at low pressure was

expected

Tested and operational at CEA (Cadarche) and JT-60

JT60 source

Kamaboko type 2/3 of ITER source size In operation since 1996

~50 high-current filaments

- limited lifetime (100 h)
- frequent remote maintenance, every 2-3 months

Design: two sources

22 A, 500 keV, 10 s D- ion beams

Achieved (2010):

17.4 A or 13 mA/cm2, 400 keV, 0.7 s

10 A, 360 keV, 25 s

Problem: voltage holding

JT-60 negative ion beam line

Construction of JT-60SA, first plasma in March 2019

LHD negative ion source

(Takeiri, 2010)

Three injectors with two sources each Operating since 1998 **Design:** 30 A, 180 keV, 1 s (one source) **Achieved:** 37 A or 340 mA/cm2, 190 keV, 1.6 s

Problem:

High power load on the grounded grid

Solution

Slots instead of apertures in the grounded grid

Photos of the Constructed LHD Ion Source

Design of the IPP prototype RF source

Driver design

Used in all NNBI RF sources High power density $P_{RF}/V \sim 10 - 15$ kW/l

RF matching

Self-excited 1 MHz oscillator

- + Frequency matching possible
	- => no remote controlled capacitors at the source
- Limited frequency stability

Filter field concepts

Small sources

Filter field generated by permanent magnets close to the PG

Large sources

- **ITER:** Current through the plasma grid (4kA) "PG Filter"
- => lower field close to the PG, larger range
- => **new concepts to be tested**

IPP Source

Drifting plasma in presence of a perpendicular magnetic field

Plasma drifting downwards (or upwards)

Combination of several cross B drifts

⇒ Inhomogeneous plasma density close to the plasma grid

Without magnetic filter With 5 kA PG filter

Compensation of the plasma drift in arc sources

- Individual control of the arc and filament voltages according to the intensity of local arc discharges (LHD)
- Tent filter configuration (JT60)
	- => Drift is closed azimuthally

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Production of negative ions
- Negative ion sources
- **Experimental results with the RF prototype**
- Giant source for ITER
- Test facilities

Volume production of **positive** Hydrogen ions

Surface production of **negative** Hydrogen ions

4 positive ion sources of the AUG NBI,

max. current 100 A

Reproducibility very good

Two months experimental campaign with the negative ion prototype source, max. current 4 A

Poor reproducibility

Minimum at 0.6 mono layer **not** achievable under vacuum conditions of the source (10-6 mbar)

=> **WF of Cs bulk material 2.14 eV**

WF degrades under after stop of the evaporation

=> **Detoriation by impurities** in the

background gas (Cu, O_2 , H₂O, ...)

=> Constant Cs evaporation required

Conditioning procedure:

Optimize t_{Pulse} , t_{Pause} , Cs evaporation rate

- => reduction of electron current, increasing ion current
	- Faster conditioning at low background pressure
	- Plasma grid temperature >140°
	- Source body temperature 35° to avoid trapping of Cs on the walls

Long pulse conditioning at MANITU

- Large variation of the currents at the same parameters
- Long-term degradation by impurities

Electron currents in long pulses

- **Ion currents more stable than electron currents,**
- **but saturate at high power**
- **Electron currents increase** steeper at high power
- ⇒ In long pulses high load on the extraction grid
- ⇒ Reduction of the power
- ⇒ Lower ion currents

Electron current in long pulses correlated to Cs dynamics (Cs released from inner surfaces of the source)

1. **Conditioning**

Plasma cleaning of the plasma grid surface

+ Cs evaporation

2. **Plasma grid temperature**

RF source: Minimum temperature > 150°(**?**),

- up to 220° no significant change,
- in arc sources much higher plasma grid temperature required > 250°
- => Effect of tungsten coating ?
- 3. **Positive biasing** the plasma grid with respect to the source
- Electron current more sensitive
- Dependence on the bias voltage is different according to the Cs conditions

Hydrogen: 20 - 30 mA/cm2 Pulse length ITER 400s

Deuterium:

3600s

current(**?**)

10 - 20 mA/cm2

Higher electron

0.3 Pa, 45 kW, J_{ion} = 10 mA/cm²

Stable long pulses at reduced power

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- **Giant source for ITER**
- Test facilities

Heating beams HNB

33 MW injected power 2 (later 3) tangential injectors 1 MeV 3600 s $I(D^-)=$ 40 A (one beamline)

Diagnostic beam DNB by IPR, India 3 MW, 100 keV, negative ions! $I(H⁻) = 60$ A, same source type

Requirements for the HNB ion sources Accelerated current density 20 mA/cm² (D⁻) 24 mA/cm² (H⁻) j_{el}/j_{ion} <1, at 0.3 Pa Durations: 3600s (D-), 400s (H-)

In 2007 RF Source was chosen for the reference design of ITER

Reasons for the decision:

- No regular maintenance intervals necessary Important in the radioactive environment
- Simpler and possibly cheaper
	- much fewer components on HV
	- much fewer vacuum feedthroughs
- **No tungsten** coating of the walls
	- => Lower Cs consumption
- **Proof of reliability** by 10 years operation of RF sources in the positive ion based NBI of the AUG tokamak
- Required **H- /D- current densities** have been achieved with a small scale prototype at low source pressure (<0.3 Pa) in short pulses (> 4s) on the test facility BATMAN (IPP)

Design of the ITER RF source

Test of

- the modular concept: multi driver large expansion volume,
- RF power supply with two drivers in series,
- new filter field concepts,
- optimized extraction system

Benefits of large sources

- Larger driver diameter reduces neutral depletion,
- Expanding plasmas of the multi drivers overlap
	- => Higher plasma density in the expansion chamber
	- => higher efficiency

RADI source

- About full width and half the height of ITER source $(0.76 \times 0.8 \text{ m}^2)$
- Two drivers in series supplied by one 1MHz/180kW RF generator
- **No Cs evaporation**
- **No beam extraction**

Achieved

- 2 x 130 kW operation
- Homogenous plasma density
- Low pressure operation 0.2 0.3 Pa

ELISE ion source (Extraction from a Large lon Source Experiment)

ELISE extraction system

4 beamlet groups

ELISE: Shape of plasma grid apertures

Chamfered apertures

- Less collisions with particles
- Less losses on the electrode
- => **Higher extraction probability**

DI.

Commissioning in June 2012 RADI and MANITU shut down in August 2011

Outline

- Plasma heating by neutral beam injection
- Positive Ion sources for Neutral Beams
- Negative ion based neutral beam injection
- Beam extraction
- Production of negative ions
- Negative ion sources
- Experimental results with the RF prototype
- Giant source for ITER
- **Test facilities**

Gate valve

=> no deterioration of Cs during cryo regeneration

• ELISE (IPP Garching): Half-size ITER-type source in cw operation with 60 kV/10s beam extraction.

 \rightarrow to assess spatial uniformity of negative ion flux, validate or alter source concept

- SPIDER (RFX, Padua): Full size ITER source with full extraction voltage 100 keV, $3600s \rightarrow$ to validate or alter source and extractor
- MITICA (RFX, Padua): Full size ITER source, 1 MeV, 3600s \rightarrow to validate or alter accelerator and beamline components
- DNB source test facility (Ghandinagar, India), Full size ITER source, 100 keV, 3600s

• Positive ion sources have reached a high degree of performance and reliability.

- Future fusion reactors require giant high power ion sources in which the negative ions are produced on Cs-adsorbed surfaces with low work function.
- The present development concentrates on the ITER NBI source which will produce 40A /1MeV beams for 3600s. The RF source was chosen for the ITER reference design due to the maintenance free operation and because the individual target values have been achieved with a small prototype.
- The further development of sources of ITER relevant size will be carried out in the next years on new large testbeds at IPP Garching and RFX Padua.