Charge breeding aka Charge state boosting aka 1+ -> n+ transformation

The CERN Accelerator School

Lecture layout

- 1. Introduction and motivation
- 2. ISOL beam parameters and breeder criteria
- 3. Atomic physics processes for multiply charged ions
- 4. The different concepts Stripping ECRIS EBIS
- 5. Preparatory devices and tricks
- 6. Facilities and the future

Introduction and motivation

Setting the stage

Potential beams

Radioactive nuclei: main interest for nuclear physics

RIB production techniques

IF (In-Flight fragment separator)

Isotope Separation Online (ISOL)

Down to us lifetimes Large transverse emittance Large energy spread *GeV beam energy* Pencil-like beams Chemistry involved Higher beam intensities than IF *Lifetimes* >10 ms $W_{total} < 100 \ keV$ Interesting physics at 0.1 – 10 MeV/u

- Coulomb excitation
- Few-particle transfer

(d,p), (⁹Be,2 α), (¹⁰Be,2 α), (p, γ), (p,p)_{res}...

Fusion reactions at the Coulomb barrier

Figure 3.22: Schematic diagram of the Coulomb excitation process of a projectile nucleus (Z_p,A_p) , scattering inelastically on a target nucleus (Z_t,A_t) , in the center-of-mass system.

Closing the energy gap

! Fill with *post-accelerated* ISOL-beams

Old 750 kV Cockroft-Walton proton source at CERN

=> 0.015 MeV/u for A=50

Motivation for $\mathbf{Q}^{\scriptscriptstyle +}$

1st motive for high Q

	W _{final} (MeV/u)	Time structure		
Cyclotron	K*(<mark>Q/A)</mark> ²	cw (micro structure)		
K~(Br) ² , [B]=T, [r]=m (cyclotron B-field and radius)				

2nd motive for high Q

If A/Q high => require low f_{RF} to achieve adequate :

- a. transverse focusing (focal strength ~ $1/\sqrt{f_{\scriptscriptstyle RF}}$)
- b. period length (L_{period}) of the first RF structure as the source extraction velocity is limited

Example: A=220, Q=1, U_{extr}=100 kV, L_{period}=2 cm

$$v_{extr} = \sqrt{\frac{2U_{extr}Q}{A}\frac{e}{u}} = 3E5 \text{ m/s}$$

$$f_{RF} \sim v_{extr}/L_{gap} = 15 \text{ MHz}$$

Motivation for $\ensuremath{\mathsf{Q}}^{\scriptscriptstyle +}$

ISAC 35 MHz RFQ for A/Q<30

Transverse tank dimensions scale with 1/f_{RF}

Bottom line: low A/Q => + short linac + small transverse dimension

Linac cost ~ length*radius^p 1<p<2

First ideas/suggestions for post-acceleration of radioactive ion beams: "Nuclides far off the Stability Line" (1966) Sweden

ISOL beam parameters and breeder criteria

What comes in and goes out

For ion source details see T. Stora's lecture

ISOL beam parameters

lon mass	4 to >250	He to >U	
Intensity	few to >1E11 ions/s	Large dynamic range	
Charge	1+	Some (undesired) 2 ⁺ , 3 ⁺ ,	
Energy	several tens keV		
Energy spread	few eV		
Temporal structure	cw or quasi-cw	Driver beam – cw or pulsed	

Extra

⁸Li (T_{1/2} = 840 ms) produced by target fragmentation of tantalum foils at CERN period time = n*1.2 s

$$P(t,\lambda_r,\lambda_f,\lambda_s,\alpha) = \frac{(1-e^{-\lambda_r t})}{Norm} \left[\alpha e^{-\lambda_f t} + (1-\alpha)e^{-\lambda_s t} \right]$$

Semi-continuous depending on release properties and ionization time typical tens ms to minutes (r=rise, f=fast, s=slow)

Checklist for breeder design

Breeder criteria

0	Achievable A/Q (3 <a q<9)<="" th=""><th>ISOL</th><th>I</th>	ISOL	I
1	High breeding efficiency rare radionuclides limit machine contamination chain of machines $\eta_{breed} = \frac{I(Q)}{Q \cdot I(1^+)}$		projectile source production target
2	Short breeding / confinement time handle short-lived ions	ion source η _{ionization}	$\eta_{target \ ion \ source}$
3	Clean extracted beams		electromagnetic
4	High ion throughput capacity		$\eta_{separation}$
5	$\begin{array}{l} \textbf{Good beam-quality (large } \boldsymbol{\alpha}, \textbf{small } \boldsymbol{\epsilon}_{trans}, \textbf{small } \boldsymbol{\Delta} \textbf{E}_{extr}) \\ \textbf{good trapping efficiency} \\ \textbf{high linac/separator transmission } \boldsymbol{\eta} \\ \textbf{good mass separation} \end{array}$	10 - 100 keV charge state breeding η _{breeding}	$\eta_{CB \ delay} = e^{-\left(\frac{t_{breed}}{t_{1/2}}\ln 2\right)}$
6	Pulsed or cw machine / beam extraction time structure dependent on accelerator		post- accelerator
7	Easy handling and reliable to be used in an accelerator chain on a production basis	η _{detector}	secondary target

Atomic physics processes for multiply charged ions

Short revision

See also lectures by M. Kowalska and G. Zschornack

Ionization process

Electron impact ionization more efficient than proton and photon impact $\hbar v$

Multistep (successive) ionization the process takes time

e + Aⁱ⁺ -> A⁽ⁱ⁺¹⁾⁺ + 2e

Ionization time has to be shorter than lingering time in the source

Average time to reach the charge state q with multistep ionization for electrons with *defined kinetic* energy:

$$\overline{\tau}_q = \sum_{i=1}^{q-1} \overline{\tau}_{i \to i+1} = \frac{e}{j_e} \sum_{i=1}^{q-1} \frac{1}{\sigma_{i \to i+1}}$$

Lotz's semi-empirical electron impact ionization cross-section formula for the case of high ionization energies $E_{kin} > P_i$ is:

$$\sigma_{q \to q+1} = 4.5 \cdot 10^{-14} \cdot \sum_{nl} \frac{\ln \left(\frac{E_{kin}}{P_i}\right)}{E_{kin} \cdot P_i} \quad [\text{cm}^2]$$

Energies in eV and nl sum over n shell and subshell l E_{kin} - energy of the incident electron $P_i=E_{nl}$ - binding energy

Ionization time

 $\label{eq:single} \begin{array}{l} \sigma-\text{single ionization cross-section } cm^2 \\ j_e-\text{electron current density } A/cm^2 \\ \text{valid for electrons with fixed energy} \end{array}$

Charge state distribution

Ionization a statistical process \Rightarrow charge state distribution

Typically 15-25% in most abundant state

Electron energy

10 to 40 eV for singly charge ions several 100 eV for multi-charged states keV to tens of keV for highly charged ions

Competing processes

$$\frac{dN_{i}}{dt} = n_{e} \upsilon_{e} [\sigma_{i-1 \to i}^{EI} N_{i-1} - (\sigma_{i \to i+1}^{EI} + \sigma_{i \to i-1}^{RR} + \sigma_{i \to i-1}^{DR}) N_{i} + (\sigma_{i+1 \to 1}^{RR} + \sigma_{i+1 \to i}^{DR}) N_{i+1}] - n_{0} \upsilon_{ion} [\sigma_{i \to i-1}^{CX} N_{i} - \sigma_{i+1 \to i}^{CX} N_{i+1}] - N_{i} R_{i}^{ESC}$$

 N_i – number of ions with charge i n_e , v_e – electron density and velocity n_o – neutral particle density $v_{ion} = \sqrt{2kT_{ion}/M_{ion}}$ – averaged ion velocity

EI – electronic ionization RR – radiative recombination DR – dielectronic recombination CX – charge exchange R_i^{ESC} – escape rate

The First Alternative

carbon'foils at CERN Linac3

Classic concept – stripping

* Doesn't really classify as charge breeder

- + Simple method, passive elements.
- + Sub-us half-life isotopes easily reachable
- + Very high beam capacity >100 eµA
- + No additional beam contamination

* Foil materials: Be, C, Al, Al₂O₃, mylar

* Bohr criterion: electrons whose orbital velocity is larger than projectile velocity are retained

Baron's formula for equilibrium charge state distribution (CSD) $\overline{Q} = Z_{proj} \cdot C_1 \left(1 - C_2 e^{-83.28\beta/Z_{proj}^{0.447}} \right)$ $C_1 = 1 \text{ for } Z_{proj} < 54$ $C_1 = 1 \text{ exp}(-12.905 + 0.2124Z_{proj} - 0.00122Z_{proj}^{-2}) \text{ for } Z_{proj} \ge 54$ $C_2 = 1 \text{ for energies } W > 1.3 \text{ MeV/u}$ $C_2 = 0.9 + 0.0769 \text{ W for } W < 1.3 \text{ MeV/u}$

Extra

NB! ~only dependent on velocity $v_{\text{proj}} {=} \beta c$ and Z_{proj}

See also: G. Schiwietz, P.L. Grande, Improved charge-state formulas NIMB 175-177 (2001) 125-131 Refined formulae for foil and gas stripping

Foil equilibrium thickness

M. Toulemonde, 'Irradiation by swift...', Nucl Instrum Meth B250 (2006) 263-268

- * Typical carbon foil thicknesses: 5-1000 ug/cm² -> 25 nm to 5 um
- * Pre-acceleration to >500 keV/u
- * Foil thicknesses < 5 ug/cm² (< 25 nm) practically difficult to mount => use gas strippers for low velocity beams

* Used for very low velocity: 5-25 keV/u

* Very thin integrated thickness: fraction of ug/cm²

* Usually noble gases

Extra

* Small charge increase from 1+ to 2+, 3+ or 4+

Gas stripping

Facility based on stripping technique

Ideally strip as soon the increased velocity enables a higher charge state

+ make maximum use of the accelerating voltage

- but at each stripping stage the transmission is reduced due to the CSD

Multi-charge state acceleration

- * Accelerate multiple q after the stripper
- * $\Delta q/q$ of ~20% can be accepted
- © Higher intensities

- * Synchronous phase of multi-q beam
- * The same final energy for all charge states

8 ε (trans. and long.) ~3 larger
 compared with single charge
 state acceleration

Stripping technique drawbacks

⊗ Needs pre-acceleration	in gas stripping 8 to 20 keV/u in foil stripping ~500 keV/u		
Emittance increase	Energy straggling Angular straggling —	$\theta_{T1/2}^2 = \theta_{I1/2}^2 + \theta_{S1/2}^2$ $\mathcal{E}_T = \pi \cdot x_{T1/2} \cdot \theta_{T1/2}$ $x_{T1/2} = x_{11/2} = \text{incident beam spot size}$ $\theta_{T1/2} = \text{divergence exiting beam}$ $I = \text{Incident, T=traverse, S=Scattering}$	
No macro-bunching capability	=> CW accelerator needed		
? Foil lifetime	 Radiation damage Sublimation at high power levels (>150 W/cm2) Not limiting for radioactive beam intensities 		
 Limited efficiency for high-Z elements 			

The Second Alternative

Extra

ECRIS physics

Photo of plasma

'Magnetic bottle' confinement of plasma

- * Longitudinally by Helmholtz coils
- * Radially by powerful permanent multipole => min-B field – increases in all directions

e⁻ temperature distributions

Cold <200 eV: lowest confinement time Warm < 100 keV: ionization process (main source of bremstrahlung) Hot > 100 keV: highly confined

Electron confinement time:

$$\tau_e = \frac{T_e^{3/2}}{n_e} \cdot const$$

What RF is needed?

n_*τ=5E10 s/cm³

 f_{RF} needs to be higher than the plasma frequency f_p (cut-off frequency)

 $n_e < 1.2E_{10} f_{RF}^2 cm^{-3}$ $f_{RF} = in gigahertz$

Plasma frequency versus plasma density

ECRIS capacity

We know $n_e \sim 1E_{12} \text{ cm}^{-3}$ for charge breeding ECRIS

Assume:

- * plasma volume r=2 cm, l=10 cm
- * confinement time 0.1 s
- * 10% radioactive ions
- * 20% in the desired charge state 10+
- => 2.5E12 radioactive ions/s extracted (0.4 puA)

The large capacity – a major strength of the ECRIS CB concept!

Stopping ions in ECRIS plasma

1st electrostatic slow-down 2nd subsequent long-range ion-ion Coulomb collisions lead to 90° deflection* 3rd ionized

=> lons trapped

* Cumulative deflection due to small-angle scattering is larger than those due to single large-angle scattering (Spitzer/Chandrasekhar theory)

* Stopping of ions tricky and critical * No wall-collision tolerated

Mean free path for 90° deviation smaller than plasma size?

Injection velocity into ECR plasma

What is the optimal velocity for stopping inside a plasma?

Assumption

- 1. low intensity of injected particles
- 2. only interaction via long distance cumulative plasma collisions
- 3. plasma particles Maxwellian velocity distribution
- 4. distance between 90° deviations < plasma size

$$\frac{\Delta v_a}{\Delta t} \sim \frac{n_b}{2\pi\varepsilon_0} \left[\frac{Z_a Z_b e^2}{m_a \overline{v}_b} \right]^2 R(u_{ab}) \ln \Lambda$$

 $R(u_{ab}) = \frac{v_a}{\overline{v_b}}$ $u_{ab} = \frac{v_a}{\overline{v_b}}$ Optimal slowing down when: $v_{injected particle} = \langle V \rangle_{plasma particles}$ Example * ECR oxygen plasma T⁺=2 eV * Rb¹⁺ ISOL ions $\Rightarrow E_{inj}(Rb^{1+}) \sim 2eV*m_{Rb}/m_0 \sim 10 eV$

If we'd like to inject ¹¹Li⁺, optimum energy would be <2 eV => difficult

Compatible with previous slide!

Longitudinal acceptance

The attainable charge state is mainly depending on the:

electron density n_e confinement time τ_{ion} electron energy distribution EEDF

How to change the charge state?

* Extracted energy spread few eV

- * Total I_{extracted} ~100 UA: + radioactive ions
 - buffer gas ions (He, Ne or O)

О

b

ions from the plasma chamber
 sputtering of chamber material
 desorption of implanted ions – memory effect

Loss lines for a hexapole structure

Extracted beam properties

ECRIT mode

Normal operation mode: cw injection cw extraction

Make use of afterglow:

- 1. Switch off RF
- 2. Heating of electrons stops
- 3. Electron confinement stops
- 4. Plasma instability / Coulomb expulsion of trapped ions

Result:

- a. ion trapping (some 100 ms)
- b. pulsed beam extraction (some ms)

Practical design aspects

* Similar magnetic-field relations for charge breeding ECRIS CB as for high-Q ECRIS:

 $B_{inj}/B_{ecr} \sim 4$, $B_{ext}/B_{ecr} \sim 2$, $B_{min}/B_{ecr} \sim 0.8$, $B_{rad}/B_{ecr} > 2$, $B_{ext}/B_{rad} < 0.9$

 B_{inj} (B_{ext}) is the B-field max at injection side (extraction side) B_{rad} the radial B-field of the sextupole at the plasma chamber wall B_{min} the minimum B-field between the magnetic mirrors

- * Grounded injection tube just inside B_{inj}
- * Radial RF injection preferred to axial

Radial RF wave-guide

B_z (x,z) y=0 symmetric

Axial RF wave-guide

Asymmetric B-field deflects injected particles

ECRIS CB facility

The Third Alternative

• Produces highly charged ions

axial B-field

- e⁻ beam compressed by solenoid B-field
- Ions are trapped in a magneto-electrostatic trap
- Ionisation by e⁻ bombardment from a fast, dense mono-energetic e⁻ beam

Electron Beam Ion Source /Trap

Some consequences for CB!

The average time necessary to reach the charge state *q*:

Breeding time

 σ – single ionization cross-section cm² j_e – electron current density A/cm² valid for mono-energetic electrons

j_e usually machine fix j_e between 50 and 5000 A/cm²

\Rightarrow Chose A/Q by adjusting the breeding time

NB! $I_e = j_e * r_{ebeam}^2 * \pi$ 1st reason for high I_e

Ion injection EBIS

Desired: overlap between injected ion beam and electron beam If injection outside electron beam => effective j_e low => increased T_{breed}

- 2. Benefits from reduced emittance
- -> preparatory RFQ buffer gas cooler or Penning trap

Electron beam energy

How to choose electron beam energy U_e for charge breeders?

- 1. Related to the available current through the perveance: $I_e = PU^{3/2}$ (practical limit P~5 uPerv) Example $I_e = 1A => U_e > 3500 \text{ eV}$
- 2. U_e has to be larger than the ionization potential I_p for required charge state Q. Worst case reach elements close to neutron dripline, since excess of neutrons.

Z	A (neutron rich)	Q (A/Q~4)	I _{ionization} (eV)
20	60	15	900
40	110	27	1500
60	161	40	2800
80	210	52	3100

Cross section max at 2.7*I_{ionization}

 \Rightarrow No need for U_e > 9000 eV

EBIS capacity

Space charge capacity – determined mainly by the electron beam

$$N^{-} = k \frac{L_{trap} r_{ebeam}^{2} \pi}{e} \rho_{e} \qquad \rho_{e} = \frac{j_{e}}{v_{e}} = \frac{I_{e}}{\pi \cdot r_{ebeam}^{2}} \sqrt{\frac{m_{e}}{2eU_{e}}} \implies N^{-} = 1.05 \cdot 10^{13} \frac{kL_{trap} I_{e}}{\sqrt{U_{e}}}$$

 N^{-} = number of elementary charges I_{e} and U_{e} = electron beam current and energy k = attainable space charge compensation degree L_{trap} = trap length

3rd reason for high current

Example ¹³²Sn³⁴⁺ using REXEBIS parameters: $I_e = 0.5 A, U_e = 5 \text{ keV}, L = 0.8 \text{ m}, k = 50\% => ~3.10^{10} \text{ charges}$ => 3E10/34*0.2 = 2E8 ions/pulse 7~20% in desired charge state

NB! Ion throughput (ions/s) = (ions/pulse) / T_{breed}

t (us)

Beam extraction scenarios

For REXEBIS duty factor $T_{extr}/T_{breed} \sim 100 \text{ us /100 ms}$

=> Good signal-to-noise-ratio

Speed up extraction for multi-turn injection into synchrotron <10 us

EBIT CB facility

3 MeV/u re-accelerator of thermalized projectile fragmentation and fission beams

With 1E4 A/cm² ->

 charge breed ions with Z<35 into Ne-like or higher within 10 ms
 ionize from 1+ to 2+ within <1 us

Design goals

- Continuous injection and accumulation of ions
- Variable extraction duty cycle (ms pulse to quasi-continuous)
- Electron current density >1E4 /cm2
- Beam rates >1E9 ions/s
- Highest efficiency
 - (> 50% in a single charge state)

Cryogenic trapping region

Preparatory devices and tricks

Remember: often deal with <1E4 pps => 1.7 fA

Beam contamination

Can't see the trees for the forest

Beam impurities:

a. isobaric contamination ______ from ISOL-target

1 GeV proton beam on a lanthanum (La) target

J. Lettry, V. Fedoseev (CERN)

Masses of A=108 isotopes

Extra

Resolution required to separate:

Neighbouring mass:R=250Molecular ions (e.g. CO from N_2):R=500-1000Isobars (e.g. 96 Sr from 96 Rb):R=5000-50000Isomers:R=1E5 - 1E6

ISOL beam separation

Problem: isobaric separation difficult

* Requires RFQ cooler for pre-cooling of transverse $\boldsymbol{\epsilon}$

* Tails of high intensity masses may go through selection system

Solution

- 1. Isobaric mass resolution inside Penning trap
- 2. Molecular beams

amplitudes reduced

Preparatory beam cooling

Resolving isobars in Penning trap

* Low m/ Δ m~300 in REXTRAP in normal mode * Can be setup with m/ Δ m>10000

Procedure

- cool down the ion cloud (normal operation)
- shift out the ion cloud (desired and contaminants) with a mass independent dipolar excitation $v_{RF} = v_{-}$ to r>5 mm
- selectively re-centre the desired species with $v_{RF} = v_c$
- at extraction only the centered ions survive

NB! Re-centering is mass dependent

See also G. Bollen, Europ. Phys. J. A15, 237-343 (2002)

Molecular beams

The idea

- 1. Use chemical properties to separate isobars e.g. ⁹⁶Rb from ⁹⁶Sr
- 2. Create a molecular sideband (96Sr19F+) with gas leak at ISOL-target
- 3. Molecular ions are extracted and selected in the separator (A=115 selection)
- 4. Keep molecules inside trap, break them in EBIS
- 5. Charge breed as usual and obtain clean ⁹⁶Sr

Works also with ECRIS!

Remember: often deal with <1E4 pps => 1.7 fA

Beam impurities:

- a. isobaric contamination _____ from ISOL-target
- b. residual gases in CB

 $I_{residual} \propto \sigma_{o->1+} P_{res gas}$

Beam contamination Can't see the trees for the forest

J. Lettry, V. Fedoseev (CERN)

2. Electrostatic deflector performs a potential selection

 $E_{def}r_{def}=2U_{ext}$

Even so, some A/Q contaminants difficult to resolve ⁷Be³⁺ from ¹⁴N⁶⁺ R=450 ¹⁸F⁹⁺ from ¹²C⁶⁺ R=19200

 $\Delta(A/Q)$ typically a few hundred (A/Q) for a breeder separator

Facilities and the future

CB for low-energy experiments

* Not only for post-acceleration!

High precision mass measurements

m – ion mass q – ion charge T_{rf} – rf excitation time B – magnetic field N – number of measurements

Ideally only one ion per measurement cycle

Charge breeders for RIBs worldwide

Detail of the EURISOL Layout

Modified from P. Butler's presentation, NuPECC meeting June 2007

Two main paths

- Very exotic low-intensity (<1E7 ions/s) beams for `standard' experiments
- 2. High intensity beams (>1E9 ions/s) to generate even more neutron rich beams

 beam purity not of utmost importance

The *real* challenges:

- 1. Inject ions into storage rings
- \Rightarrow fully stripped charge for Z>60
- 2. Breeding of beta beams (e.g. ⁶He and ¹⁸Ne)
- => 1 s trapping of high intensity

Extra Simplicity			Stripper	EBIS	ECRIS
		Simplicity	3, passive element	1, complicated (SC, UHV, e-gun)	2, medium (RF, beam tuning)
		Beam properties in	3, no special requirements	1, bunched, small acceptance	2, CW, medium acceptance
		Beam properties out	1, emittance blow-up	3, us or ms bunch, small emittance	2, CW or ms bunch
		Low intensities	3, no contamination	2, some <0.1 pA	1, high rest-gas level
		Rapidity	3, instant, us isotopes	2, 10 to few 100 ms	1, some 10 ms to a few 100 ms
		CSD	3, narrow, varying charge state	3, narrow, high charge state	2, broad CSD, moderate charge
		CSD tuning	1, not tunable	3, change T _{breed}	2, many parameters
		Machine contamination	2, foil exchange	1, multiple parts	2, change plasma liner
		Storage time	1, non existing	3, up to several s	2, ~100 ms
		Beam capacity	3, very high, 100 uA	1, limited to nA	2, several uA
		Energy spread	1, ∆W/W~1‰	2, a few 10 eV*q	3, some eV
		Efficiency	2, 5-15%	2, 5-20%	2, 5-20%
		Mass range	1, heavy masses difficult	3, full mass range	1, light masses difficult
		Life-time	2, foil breakage, 50 mC/cm ²	1, electron cathode	3, klystron lifetime
		Price	1 high, (incl. pre-acc)	2, ~1 Meuro	3, ~0.5 Meuro

Weight function according personal preference

Bibliography

General books

- Handbook of Ion Source, B. Wolf, Boca Raton, FL: CRC Press, 1995
- Ion Sources, Zhang Hua Shun, Berlin: Springer, 1999.
- The Physics and Technology of Ion Source, I. G. Brown, New York, NY: Wiley, 1989
- Introduction to Plasma Physics and Controlled Fusion, Vol 1: Plasma Physics, F. F. Chen, Plenum Press 1974
- Electron Cyclotron Resonance ion Source and ECR Plasmas, R Geller, IOP 1996

General charge breeding papers

- Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source, R. Vondrasek, Rev. Sci. Instrum. 83, 02A913 (2012)
- Charge breeding of radioactive ions with EBIS and EBIT, F. Wenander, J. Instrum. 5, C10004 (2010)
- Evaluation of charge-breeding options for EURISOL, P. Delahaye O. Kester, C. Barton, T. Lamy, M. Marie-Jeanne and F. Wenander, Eur. Phys. J. A 46, 421 (2010).
- Charge breeding application of EBIS/T devices, O. Kester, AIP Conf. Proc. Vol. 1099 (2009) 7-12.
- European research activities on charge state breeding related to radioactive ion beam facilities, T. Lamy, J. Angot, and T. Thuillier, Rev. Sci. Instrum. 79, oA2909 (2008)
- Charge State Breeders: on-line results , F. Wenander, Nucl. Instrum. Methods Phys. Res. B 266, 4346 (2008).
- Status of charge breeding with electron cyclotron resonance ion sources, T. Lamy et al. Rev Sci Instrum. 77 (2006) 03B101
- Charge Breeding Techniques, F. Wenander Nucl Phys A746 (2004) 40c (extended version as CERN note, CERN-AB-2004-035)

Miscellaneous relevant conference proceedings

- International Workshop on ECR ion sources
- International Symposium on EBIS/T
- Radioactive Nuclear Beams (discontinued)
- International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS2012)

Executive summary

Stripper

Fast but expensive (pre-acc. LINAC)

ECRIS

Large capacity but dirty

Clean but low capacity

http://www.eurisol.org/ Task 9