

MQXFB09: Coil ordering

Penelope Matilde Quassolo, Susana Izquierdo Bermudez, Emmanuele Ravaioli

06/02/2025

Background

- With the introduction of the mini-swap in MQXFB magnets, there is a bit less margin in the protection at low field to tolerate the spread on QH parameters (circuit resistance, capacitance/voltage of the HFU...).
- The stablished requirements for the quench heater resistance are:
 - Quench heater resistance at 293 K between 5.6 and 7.3 Ω
 - Quench heater resistance at **nominal operation conditions** between 3.2 and 4.2 Ω
 - At least 6 quench heater circuits with at least 3.4 Ω resistance at nominal operation conditions
- To assure the fulfill of the requirements with margin, in addition to the usual criteria to select coil ordering (RRR and Cu/Sc ratio), a check on the spread of the QH resistance circuit is performed systematically before the assembly of every magnets, starting from MQXFB04.

Coil sorting according to coil material properties (RRR and Cu/Sc ratio)

Simulation of a quench at nominal current (16230 A).

Cases included in the parametric analysis:

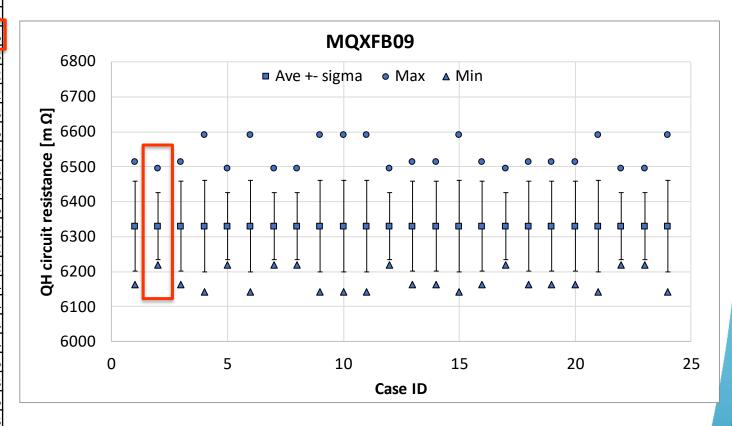
- Case A: No failures
- Case B: QH1+QH3 circuit failures
- Case C: QH5+QH6 circuit failures
- Case D: CLIQ+QH2 circuit failures
- Case E: CLIQ+QH6 circuit failures
- Worst-case: Highest voltage to ground among above-mentioned cases.

Maximum expected coil voltage defined by electrical design criteria (e.d.c.): 670 V at nominal current (see EDMS 1963398).

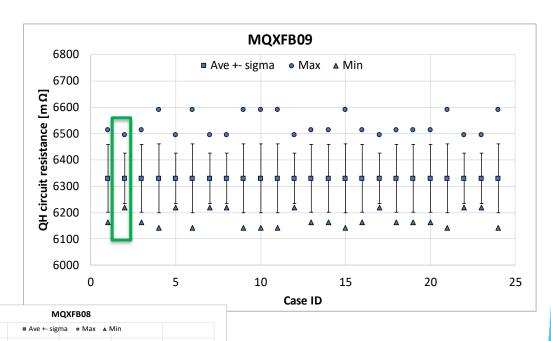
Configurations resulting in peak voltage to ground higher than this value are highlighted in

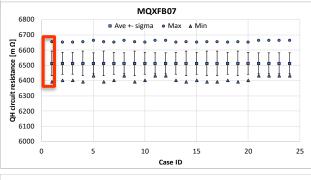
red.

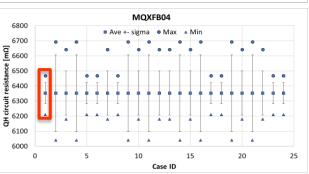
0 8	roun Ele	ctric	al orde	r Case	A Case I	B Case C	Case D	Case E	Worst-case	% wrt lowest	% wrt e.d.c.
	154	1 152	153 15	5 544	4 601	633	632	597	633	+0%	-6%
2	2 154	1 153	152 15	5 544	4 602	634	631	595	634	+0%	-5%
3	3 154	1152	155 15	3 546	602	636	614	616	636	+0%	-5%
4	154	155	153 15	2 546	602	636	622	593	636	+0%	-5%
Ţ	154	153	155 15	2 540	603	636	629	592	636	+0%	-5%
(5 154	155	152 15	3 546	602	637	605	614	637	+1%	-5%
7	7 153	3 154	152 15	5 571	1 634	661	630	592	661	+4%	-1%
			155 15		3 635	663	628	590	663	+5%	-1%
G	155	5 154	152 15	3 577	7 638	664	605	611	664	+5%	-1%
1	0155	5 154	153 15	2 577	7 638	664	621	590	664	+5%	-1%
1	1153	3 152	154 15	5 583	3 641	673	627	597	673	+6%	+0%
1	2 155	5 152	154 15	3 589	9 646	676	601	616	676	+7%	+1%
1	3 153	3 155	154 15	2 586	642	676	617	593	676	+7%	+1%
1	4155	5 153	154 15	2 588	8 646	676	617	592	676	+7%	+1%
1	5 153	3 152	155 15	4 587	7 643	677	586	641	677	+7%	+1%
1	6153	3 155	152 15	4 588	8 643	678	578	639	678	+7%	+1%
1	7155	5 152	153 15	4 590	0 647	678	579	641	678	+7%	+1%
1	8 155	5 153	152 15	4 590	0 647	679	578	639	679	+7%	+1%
1	9 152	2 154	153 15	5 592	2 656	681	629	592	681	+8%	+2%
2	0152	2 154	155 15	3 595	657	684	611	611	684	+8%	+2%
2	1152	2 153	154 15	5 604	4 663	693	625	594	693	+9%	+3%
2	2 152	2 155	154 15	3 607	7 664	696	599	614	696	+10%	+4%
2	3 152	2 155	153 15	4 608	8 664	697	577	639	697	+10%	+4%
2	4152	2 153	155 15	4 608	8 665	697	584	639	697	+10%	+4%

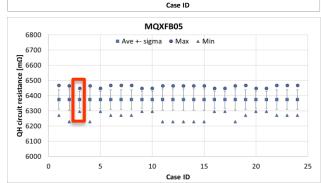

Generated by E. Ravaioli, TE-MPE-PE

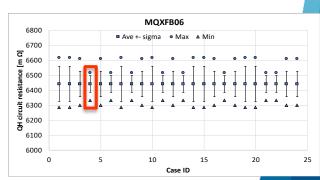
Coil sorting according to QH resistance

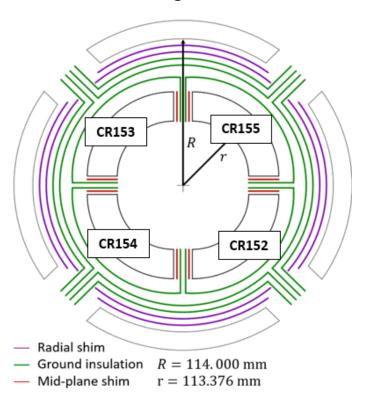

	Electrical order						
CASE ID	P1	P2	Р3	Р4			
1	154	152	153	155			
2	154	153	152	155			
3	154	152	155	153			
4	154	155	153	152			
5	154	153	155	152			
6	154	155	152	153			
7	153	154	152	155			
8	153	154	155	152			
9	155	154	152	153			
10	155	154	153	152			
11	153	152	154	155			
12	155	152	154	153			
13	153	155	154	152			
14	155	153	154	152			
15	153	152	155	154			
16	153	155	152	154			
17	155	152	153	154			
18	155	153	152	154			
19	152	154	153	155			
20	152	154	155	153			
21	152	153	154	155			
22	152	155	154	153			
23	152	155	153	154			
24	152	153	155	154			








MQXFB09, B08, B07, B06, B05 and B04

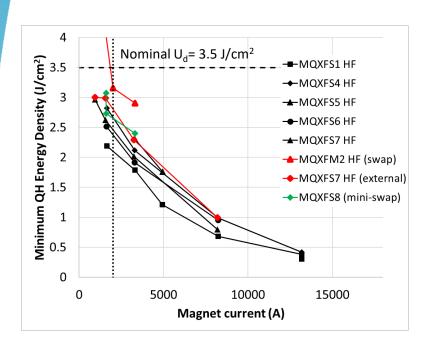


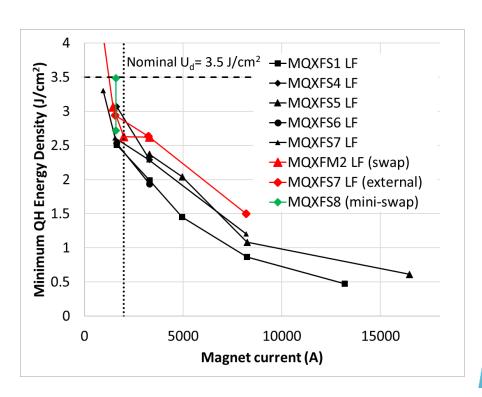
Conclusion

Here is presented the coils ordering for MQXFB09

References

- Quench heater parameters MQXF (22/01/2022) https://indico.cern.ch/event/1119409/
- NCR MQXFBP3 QH resistance EDMS 2782298
- Quench heater parameters MQXF (09/07/2021)
 https://indico.cern.ch/event/950696/
- NCR MQXFBP2 QH resistance <u>EDMS 2643444</u>
- HL-MCF Meeting #121 Update on the MQXFB QH Resistances https://indico.cern.ch/event/1305402/

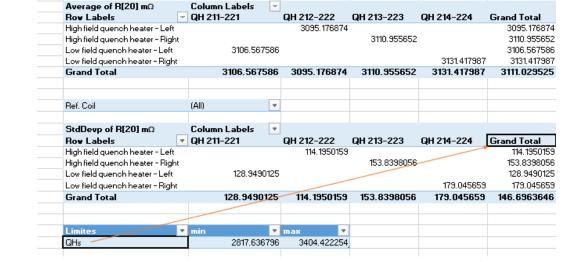


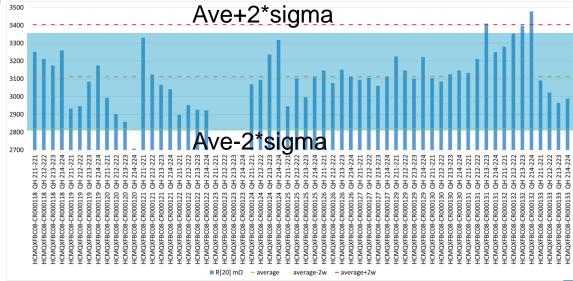


Additional slides

Minimum energy density

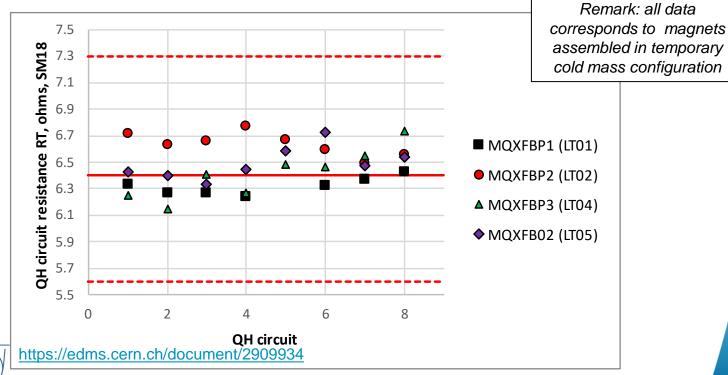
Minimum Energy Density = $2.5 - 2.7 \text{ J/cm}^2$ (to initiate a quench at 2 kA) Final QH configuration:


MQXFB mini swap (more protection tests planned in S8, to have more statistics) MQXFA impregnated heaters in direct contact with the coil (S1-S6)



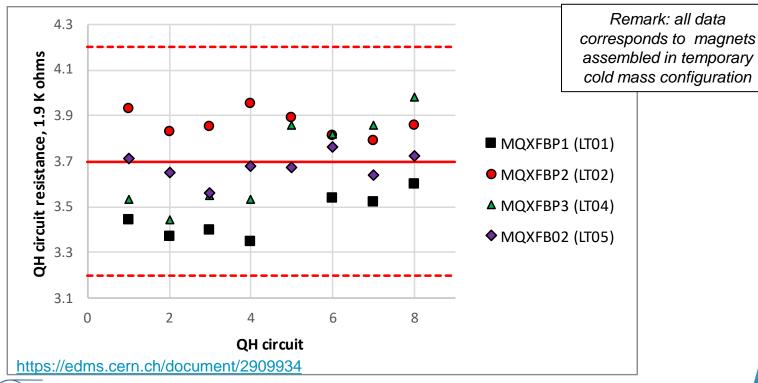
QH resistance – individual strips

- The target was 3.1 ± 0.26 (2.84-3.36 ohms, i.e., \pm 8 %)
- With few exceptions, we are within the target
- In case we are slightly out of the tolerance in the individual strips, the expected heater circuit resistance after assembly is checked and if possible, the coil can be placed in the optimal position to compensate for deviations
 - The driving parameter is the peak voltage to ground based on conductor properties, but in general several configurations are able to fulfill requirements
 - So far, this optimization was not needed.



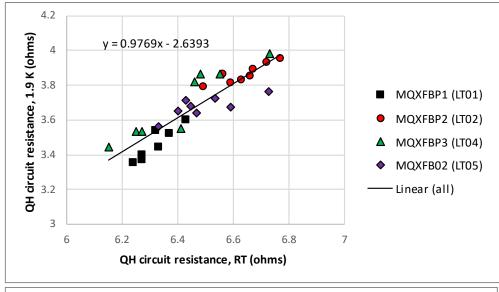
Quench heater circuit resistance, tolerance range at warm, SM18

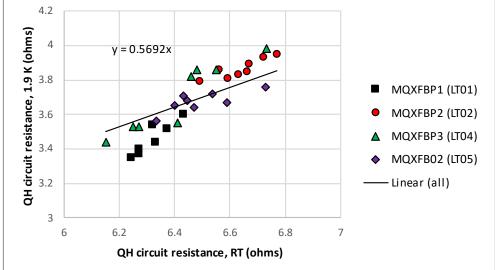
- SM18 ranges follow 180 tolerances for electrical QA, i.e., 5.6 7.3 ohms (i.e, +- 13 %)
 - Previous target 6-6.8 ohms (i.e, +- 6 %)
 - For reference, LHC dipoles was 22 ohms +- 4.5 ohms (i.e, +- 20 %)


 The maximum difference between warm before test and warm after test shall be < 0.05 ohms (as LHC dipoles)

Quench heater circuit resistance, tolerance range at cold, SM18

- At cold, we keep the same spread that at warm, i.e., 13 %
 - Target is 3.7 +- 0.5 ohms (i.e., 3.2 to 4.2 ohms, before it was 3.5-3.9 ohms)
 - The resistance of at least 4 circuits shall be larger than 3.4 ohms to assure sufficient margin to initiate a quench at low current
 - For reference, LHC dipoles was 12.5 ohms +- 3 ohms (i.e, +- 24 %)





Cold vs warm

 Remark: after MQXFBMT4 test, enough information to decouple the RRR from quench heaters and wiring, to maybe find a better correlation in terms of RRR

