

John P T Salvesen

DEALING WITH BAD VIBES

keeping beams in collision at FCC-ee

J. Salvesen

2nd FCC Early Career Forum: Deep dive across the FCC

Funding statement

EAJADE

This work was partially supported by the European Union's Horizon Europe Marie Sklodowska-Curie Staff Exchanges programme under grant agreement no. 101086276.

FCCIS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

About me

Who Am I

John Salvesen (Jack)

Doctoral Student at CERN: BE-ABP-INC DPhil Candidate at Oriel College,

University of Oxford

CERN Supervisor:Frank ZimmermannUniversity Supervisor:Phil Burrows

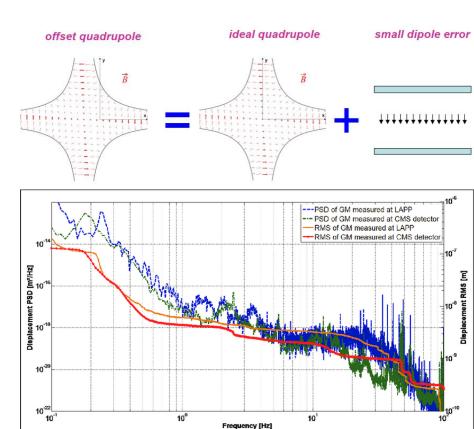
Project within **FCCIS Task 2.3**: "Interaction region and machine detector interface design" Under **EAJADE Work package 3**: "Special technologies, devices and systems performance"

Thesis Goal

Develop a realistic, self-consistent, model of the FCC-ee IP collision feedback system

- Realistic modelling of the measurable signals (BPMs, luminometers and more)
- Realistic feedback hardware considerations (corrector magnets, processing time)
- Self-consistent 6D lattice tracking including modelling of beam-beam interaction

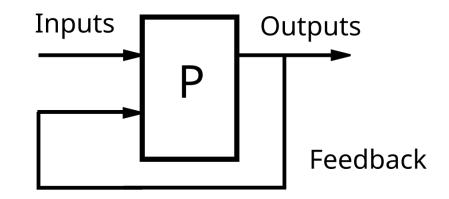
Using this model, study the luminosity performance in the presence of magnet vibrations


And first, can I demonstrate this for SuperKEKB?

Accelerator Orbit Errors

- Modern and future colliders have small beam sizes
- Accelerators are generally designed with all magnets on a plane
- Magnet offsets cause unwanted beam orbit (and other errors)
- Accelerator magnets are therefore sensitive to vibrations: *bad vibes...*

So how do we correct this?


Accelerator Feedback and Performance

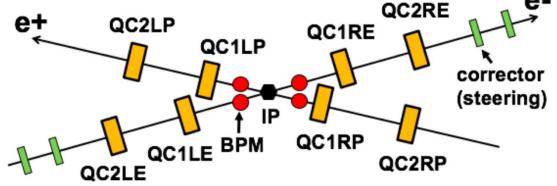
- Feedback systems exist to ensure that key performance metrics are achieved
- Some feedbacks are local and some are global

For FCC-ee, luminosity is a key focus

- Luminosity: A measure of the rate of production of particles of interest
- The luminosity comes from the collisions at the Interaction Points (IPs)

For high luminosity, stable collisions are required

Maintaining Collisions: IP Feedback


• At the Interaction points (IPs), a local feedback

system is required to correct the orbit

Required to maintain luminosity and beam

lifetime

- · Need to calculate the offsets from input signals
- Need to correct the beam orbits in a complicated region
 e+ oca

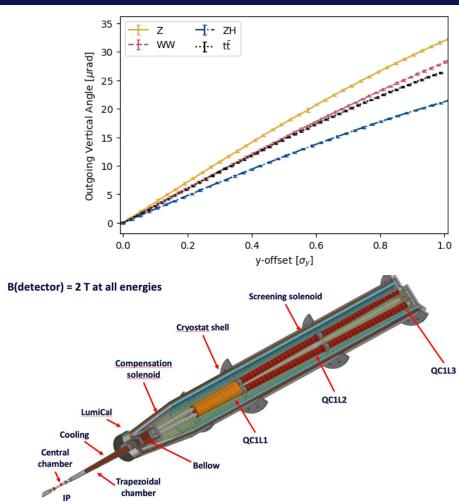
Beam-Beam Deflection

- When two beams collide, they exert a force on each other
- For small beam offsets, the kick is proportional to the offset
- From the angles in and out of the IP, the beam-beam kick can be calculated
 Requires strong kicks and good
 detection hardware

Implemented at SLC and SKEKB

Image credit: Katsunobu Oide

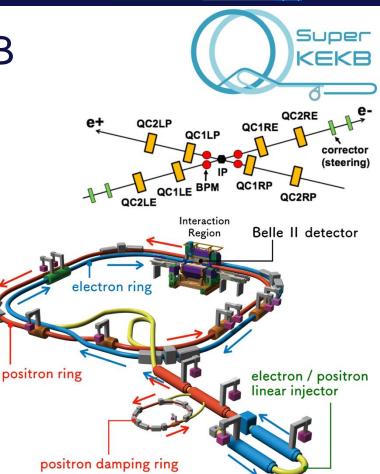
Dithering


- Drive the orbit of one beam with a known frequency
- Detect how the luminosity changes
- Adjust the central position to where luminosity is maximum

Intrinsically degrades luminosity

Implemented at PEP II and SKEKB

Challenges


- Challenging region:
 - Complicated Machine Detector Interface: solenoids, cryocooling
 - High radiation: luminosity, synchrotron radiation, beamstrahlung radiation
- Challenging measurements:
 - Small offsets to measure
 - High radiation power on detectors (~>300kW!) beamstrahlung
- Very strict performance requirements
 - Only order nm offsets tolerable!

9

Testing our plans: SuperKEKB

- SuperKEKB background:
 - 3km e+e- collider at KEK, Tsukuba, Japan
 - B factory at the Y(4s) resonance (10.58 GeV)
 - Current world record luminosity of 5.1x10³⁴cm⁻²s⁻¹
- Synergistic with FCC-ee
 - High current, nano beam scheme, crab waist scheme
- Features both types of IP Feedback!
 - "iBump" beam-beam deflection feedback
 - SLAC Dither feedback

Outlook

- Many ongoing simulation studies for FCC-ee
 - Setting performance requirements
 - Modelling output signals (across a range of tools)
 - Considering correction strategy
- Ongoing studies with SuperKEKB
 - Supported by international exchanges (with thanks to EAJADE)
 - Studying the operational experience of their systems

Much work to do, but fortunately, No Showstoppers!

Thank you for your attention.