A few questions to discuss ...

- Do we have the right R&D program ? What is missing ? What are the most critical items ?
- > Basic R&D, are we doing enough, any magic on the horizon ?
- > 12 GHz power source
- > Power distribution and regulation
- > What do you expect/need from CERN in order to participate ?

Tentative CERN x-band R&D program

When	Structure	Technology	Lab
Dec 2007	CLIC_vg1	quadrants, damped	CERN
	T26vg3MC	disks, brazed, undamped	SLAC/KEK
March 2008	CLIC_vg1	quadrants, undamped	CERN
	T26vg3MC	quadrants, undamped	CERN/SLAC/KEK
June 2008	CLIC_vg1	disks, brazed, undamped	CERN
	T26vg3MC	disks, brazed, damped	CERN/SLAC/KEK
2009	CLIC prototype	fully featured, best technology	CERN/SLAC/KEK

30 GHz program in CTF3

30 GHz will be used for fundamental studies of rf designs, preparation methods and materials

<u>30 GHz:</u>

- pi/2 structure (test of short phase advance, fabrication tech.)
- HDS 11 copper/molybdenum (for better statistics)
- HDS 11 very small (r=1.2) (clear P/C experiment without other changes)
- Round 3.5 mm made out of quadrants (clear experiment for fab. Tech.)
- HDS4_150deg_thick_r=1.75 (iris thickness, phase advance, length, P/C)
- HDS4_150deg_thick_clean (compares cleaning with previous)
- NDS4_150deg_thick_r=1.75 (fab. Tech between HDS and NDS quadrants)
- NDS4_150deg_thin (iris thickness in comparison with NDS4_150deg_thick)
- Coupler test structure (not defined yet)

The two relevant geometries for the CLIC R&D program

	CLIC	CLIC_vg1	T26vg3 damped
Frequency: f [GHz]	12	12	11.424
Average iris radius/wavelength: < <i>a</i> >/λ	0.12	0.128	0.134
Input/Output iris radii: <i>a</i> _{1,2} [mm]	3.87,2.13	3.87, 2.53	3.89, 3.17
Input/Output iris thickness: <i>d</i> _{1,2} [mm]	2.66, 0.83	2.66, 1.25	1.66
Group velocity: $v_g^{(1,2)}/c$ [%]	2.39, 0.65	2.4, 0.95	2.86, 1.42
N. of cells, structure length: N _c , <i>l</i> [mm]	24, 229	18, 179	30, 265
Bunch separation: N _s [rf cycles]	8	8	8
Number of bunches in a train: N _b	311	359	66
Pulse length, rise time: τ_p	297	295	102
Input power: <i>P_{in}</i> [MW]	65	70	111
Max. surface field: E_{surf}^{max} [MV/m]	298	283	216
Max. temperature rise: ΔT ^{max} [K]	56	58	25
Efficiency: η [%]	23.8	20	10.3
Bunch population: N	4.0×10 ⁹	4.0×10 ⁹	4.0×10 ⁹

Parameters along the structures

CLIC_vg3/1 is more extreme in maximum surface field, pulsed heating and lowest group velocity

Efficiency milestones

100 MV/m loaded, 10⁻⁶ break down rate, qb=4*10⁹, 8 rf period bunch spacing, P*pl/C = 18 Wue