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Context

• PhD at CERN: Continual Learning for anomaly detection and 
forecasting in accelerator systems.

• Part of the Efficient Particle Accelerators (EPA)[1]

project: 
• Work Package 8 (WP8) : Equipment Automation[2] : reduce downtime 

through predictive maintenance and automation of critical 
equipment.

• Current focus: Anomaly forecasting for the KFA71/79 
extraction kicker magnet in the Proton Synchrotron (PS).
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System Overview – The KFA71/79 Extraction Kicker

Purpose: Fast-pulsed magnet system to extract 
particle beams from the Proton Synchrotron 
(PS).

Components: 12 generator modules operating 
simultaneously in vacuum tanks.

• 9 modules: Section 71 (KFA71).

• 3 modules: Section 79 (KFA79).

Output: High-voltage pulses (~80 kV peak, ~4 μs
total duration).

Focus: Main region of interest is ~1 μs within the 
pulse.

Picture: Modules of KFA71
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System Overview – The KFA71/79 Extraction Kicker

Schema: Simplified schematic of a kicker module [4]

PFL: Pulse Forming Line
RCPS: Resonant Charging Power Supply

Charging: RCPS charges 
the PFL to the required 
voltage.

Switch Timing: The 
Main Switch closes at 
the precise moment for 
beam extraction.

Pulse Generation: High 
voltage discharges 
through the magnet.

Energy Dumping: The 
Dump Switch redirects 

remaining energy.

Beam Extraction: The 
beam is deflected onto 
the transfer line.
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System Overview – The KFA71/79 Extraction Kicker

Picture: CPS PFL DRUM Winding 2005 6



Historical and Future Outlook

• System installed in the 1970s.

• Undergoing a major consolidation 
project during LS3 [5] to improve:

• Reliability and availability.

• Safety (e.g. replacing mineral oil with 
ester oil, managing SF6 gas issues).

• Diagnostics and remote monitoring.

• Obsolescence and environmental 
impact.

System Overview – The KFA71/79 Extraction Kicker

Why Focus on KFA71/79
• Complex sub-components: HV 

switches (thyratrons), cables, 
transmission lines, ferrite magnets.

• High risk of beam losses during 
module failure.

• Rich waveform datasets enable 
machine learning studies.

• Aging system = higher anomaly rates.

Current Monitoring Limitations
• Threshold-based alarms on selected 

signals.

• Detection occurs after anomalies 
happen.

• Reactive maintenance, not proactive 
or predictive.

• Gaps in addressing long-term 
reliability.
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Waveform Characteristics:

• Sampling Rate: 1 sample every 4 ns for 10 µs            → 
2500 data points

• Signal Content: Short rise and fall times, short 
plateau region.

• 12 generators → 12 waveforms per cycle

• Pulse Settings: Includes desired pulse strength, 
pulse length, enabled generators, etc.

Waveforms have been stored in NXCALS since 
the end of September 2024 

→ Current analysis and training focus on October 
2024 data.

Data Description

Length
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General Idea:

1. Train a model on nominal waveforms.

2. Detect deviations using performance metrics.

3. Monitor trends to identify drifts or early anomalies.

Proposed Approach: Anomaly Detection & Prediction

Goals:
• Real-time anomaly detection.

• Minimized reliance on labeled 
failures.

• Adaptation to variations via 
Continual Learning.

• Automated recovery support.
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Data & Settings Overview:

•Enable Setting: 12-bit integer, indicating which
generators are switched on or off (e.g., 4095 if 12
generator enabled).

•Main Strength Setting: Divided among enabled
generators (e.g., if 9 out of 12 are enabled, total
strength is split by 9).

•Main Length Setting: Applied both globally and per
generator to define the pulse duration.

Data Description
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Settings Distribution – Strength and Length
Key Challenges and Implications:
Imbalanced Data:

• ~98% of waveforms share 2 length values.

• ~80% of waveform share 6 voltage values.

• Risk: Overfitting to dominant settings.

Consequences:

• Rare configurations misclassified as anomalies.

• Reduces detection accuracy and increased biases.

Recommendations

• Dataset Balancing: Sampling, augmentation, 
reweighting.

• Performance Monitoring: Focus on rare settings.

• Leverage Diversity: Use rare configurations to 
improve robustness.
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Context:
• How to label a subset of waveforms from millions of records ?

Approach:
• Comparing IPOC Data:

• Measured pulse properties against expected settings.

• Detect issues like missing pulses or faulty shot.

• Median Waveform Computation:

• Group waveforms by strength and length.

• Compute median waveforms.

• Compute deviations (e.g., L2 norm).

Outcome:
• Preliminary set of anomalies for evaluation.

• Manual verification feasible due to reduced candidate 
anomalies.

Labeling Process: Challenges and Key Steps

Expected 
length values

Potential 
Anomalies
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Initial Approach:

• Data Format: Treated 12 waveforms as a 
1-channel image (12 rows × 2500 columns).

• Grouping: Total strength, pulse length, and 
enable settings combined into a single data 
point.

• Challenges:

• Complex relationships between 
waveforms, strength, and enable settings 
were hard to learn.

• Increased model complexity reduced 
interpretability and made training harder.

Per-Generator Approach:

• Independent Circuits: Each generator 
operates with separate, parallel circuits.

• Simplified Modeling: Analyze one generator’s 
waveform at a time.

• Benefits:
• Reduced Complexity: Easier to train models.
• Better Interpretability: Anomalies traced to 

specific generators.
• Faster Data Handling: Fewer variables for 

each analysis.

Moving from Multi-Generator

Data Approach
to Per-Generator Analysis
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In the following sections, we 
focus specifically on the first 
generator of the KFA71

→ more than 600k cycle where 
this generator should have 
pulsed.

Data Approach
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Preprocessing - Creating Training and Validation Dataset

1. Time Period Selection:

• October 1st to 17th.

2. Data Filtering:

• Removed inactive generator cycles and 
known anomalies.

3. Setting Combination Processing:

• Kept combinations with ≥100 cycles  
(from 89 to 32 combinations).

4. Setting Balance:

• Balanced strength/length settings

Creating Training Dataset Creating Validation Dataset

Three subsets:

1. Settings present in training.

2. Settings absent in training.

3. Known anomalies.

Key Features

• Excludes inactive generator cycles.

• Removes low-sample combinations (<10).

• Limits to max 50 samples per combination for
diversity.

• October 18th to 24th, including anomalies for
evaluation.

Number of Sample

→ ~500k 

→ ~350k

→ ~349k

→ ~600
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ML Models – Variational Autoencoders (VAE)
Challenge:
• Unlabeled Data: Supervised learning not applicable

Goal: 
• Model normal waveform distribution
• Minimize reconstruction error.

VAE Components:
• Encoder: Maps waveforms to a compressed 

representation.
• Latent Space: Probabilistic representation.
• Decoder: Reconstructs waveforms.

Loss Function:
• Reconstruction Loss (MSE): Measures how well the 

waveform is reconstructed.
• KL Divergence: Aligns latent space with a Gaussian 

distribution.

Mathematical Formulation:

• : Loss for waveform        with model's weights      .
• : Fraction of anomalies.

Anomaly Detection
High Error: Indicates data deviates from normal distribution → Anomaly

Low Error: Data aligns with normal waveforms → Normal
16



ML Models – Conditional Variational Autoencoders (CVAE)

Problem with VAEs:
• VAEs often reconstruct subtle anomalies too well [6].
• Assume all data shares one global distribution.

Goal: 
• Use contextual information (e.g., strength, length)

Conditioning Inputs: 
• Incorporates external conditions (settings) into the model.

Why CVAEs Solve This:
• Learn conditional distributions, not a single global one.
• Use conditions to adapt reconstructions
• Increasing errors for out-of-context anomalies.
• Generalize better with conditional distributions. [14].
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Specificity:
• Condition Integration: Conditions are concatenated 

with the latent space before reconstruction.

• Contextual Reconstruction: Adjusts outputs based on 
waveform settings.

ML Models – CVAE 1
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Specificity:
• Condition Integration: Conditions are concatenated 

with the latent space before reconstruction.

• Contextual Reconstruction: Adjusts outputs based on 
waveform settings.

ML Models – CVAE 1

Issues:
• Over-reliance on Conditions: Neglects actual 

waveform data.

• Anomalies Dilution: Reconstructs averaged 
waveforms (e.g., missing pulses ignored).

• Still in Progress: Requires tuning to enhance 
performance.

• Plot: Reconstruction matches the waveform based on 
the conditions, ignoring the input anomaly.

19



Specificities:
• Condition Decoder: Predicts the conditions from 

the latent space using an additional neural 
network.

• Prediction Loss (MAE): Minimizes error between 
predicted and true conditions.

• Indirect Conditioning: Decoder uses latent space 
information without direct condition input.

• Latent Space: Encodes condition-specific 
features for better representation.

ML Models – CVAE 2
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Specificities:
• Condition Decoder: Predicts the conditions from 

the latent space using an additional neural 
network.

• Prediction Loss (MAE): Minimizes error between 
predicted and true conditions.

• Indirect Conditioning: Decoder uses latent space 
information without direct condition input.

• Latent Space: Encodes condition-specific 
features for better representation.

ML Models – CVAE 2

Advantages:
• Reduced Over-reliance: Avoids direct 

dependence on condition inputs, improving 
robustness.

• Improved Performance: Addresses issues of 
CVAE 1 by better capturing waveform 
anomalies.

• Plot: No waveform-like reconstruction for large 
anomalies 21



ML Models – CVAE 2: Architecture
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Results – Validation Normal
Best Model:
CVAE 2 provided the best results.
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Results – Validation New Settings 
Best Model:
CVAE 2 provided the best results.
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Results – Validation Anomalies
Best Model:
CVAE 2 provided the best results.
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Results – Reconstruction errors

• High Reconstruction Errors: 
Observed in some data.
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Results – Reconstruction errors

• High Reconstruction Errors: 
Observed in some data.

• Known Anomalies: Associated 
with high errors.
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Results – Reconstruction errors
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with high errors.
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Results – Reconstruction errors

• High Reconstruction Errors: 
Observed in some data.

• Known Anomalies: Associated 
with high errors.
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Results – Reconstruction errors

• High Reconstruction Errors: 
Observed in some data.

• Known Anomalies: Associated 
with high errors.

• Visualization: Logarithmic y-axis 
for clarity.
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Results – Reconstruction errors

• High Reconstruction Errors: 
Observed in some data.

• Known Anomalies: Associated 
with high errors.

• Visualization: Logarithmic y-axis 
for clarity.

• Rolling Median: Provides insights 
into anomaly precursors.
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Results – Reconstruction errors

• High Reconstruction Errors: 
Observed in some data.

• Known Anomalies: Associated 
with high errors.

• Visualization: Logarithmic y-axis 
for clarity.

• Rolling Median: Provides insights 
into anomaly precursors.

• Rolling Threshold: Dynamically 
adjusts for trends and variability 
compute as: 

→ Rolling Median + 5 * Rolling Std
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Preliminary Results – Anomaly Forecasting
Observation: Gradual rise in reconstruction error before failures.

Technique: Analyze error trends (e.g., rolling medians) for patterns.

Future Potential: Combine threshold-based and advanced models (e.g., LSTM).

Data Quality: Limited labels and root cause information.

Imbalance: Sparse anomalies, limited diversity in settings.
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Preliminary Results – Anomaly Forecasting
Threshold-based methods:

• Risk: 30 min rolling mean of reconstruction error 
→ Mean gives more weight to anomalies compared to median for risk calculation.

• Threshold: 12h Rolling median + Rolling median absolute value (MAD).
→ Median and MAD is chosen for a more stable threshold.

• Condition: If Risk > Threshold for 5 min continuously → Warning.

• Visualization: Vertical dash lines show the time warnings occur.
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Preliminary Results – Anomaly Forecasting

35



Operational Deployment for Model Validation:

• UCAP Deployment: Launch before machine restart.

• Detection: Flag anomalies and send warnings.

• Forecasting: Two warning levels:

• Rising Risk: Signals moderate issues for monitoring.

• Critical Risk: Alerts for significant risks, advising a machine stop.

• Feedback: System stops generate reports with reasons, anomalies, 
and system trends, logged in the logbook.

• Improvement: Refine detection using expert insights.
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Why Continual Learning in This Context:
• Operational Shifts: Upgrades, different beam types, new hardware components, varying high-voltage settings 

across years.

• Traditional static models may forget old knowledge or misinterpret new normal conditions as anomalies.

Key Requirements:
• Adaptation: Ongoing training with new waveforms while preserving knowledge of previously seen modes.

• Stability vs. Plasticity: Avoid catastrophic forgetting while still learning new patterns and normal states.

• Drift Detection: Distinguish natural drift in data (e.g., new standard operation) from true anomalies.

Implementation Approaches:
• Rehearsal-based: Keep a small representative buffer of past pulses to retrain or regularize the model.

• Regularization-based: Techniques like EWC (Elastic Weight Consolidation) or MAS to preserve crucial model 
parameters [10, 11].

• Dynamic Architectures: Expandable network components to handle truly novel operational regimes [12, 13].

• Generative replay: Generate past data with the model and combine them with new data for training [10].

• And More to Explore: ...

Continual Learning
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Conclusions:

• CVAE models show potential for 
anomaly detection.

• Forecasting is promising but needs 
further validation.

• Challenges: Data imbalance and limited 
operational diversity.

Conclusions & Outlook

Outlook:

• Testing: UCAP deployment this year with 
A/B testing of thresholds and forecasting 
methods.

• Improvement: Refine models based on 
feedback and validated thresholds.

• Future: Scale to other systems and 
enhance adaptability with continual 
learning.
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