

# BDF Proximity shielding status update

Truls Kolstad & Mike Parkin

10/02/2025



#### Shielding comparison

• Model used in FLUKA simulations vs Current ST model.

#### Simulation results

- Assumptions
- Results
- Notes

#### Future simulations

Adaptions

#### Discussion



## **Nomenclature of models**

#### FLUKA model

- Used within FLUKA to get energy deposition.
- Thermo model
  - Geometry conforming to FLUKA model. Used in current thermal simulations.
- New ST Model
  - Updated geometry from target complex assembly.
    Currently no simulation data.



#### Fluka model



#### Fluka model

#### Thermo model:







## **FLUKA simulation details**

- FLUKA simulation includes entire target complex.
- In FLUKA all parts of the proximity shielding is cast iron.
- Current Thermo model corresponds to dimensions of the FLUKA model.
- FLUKA simulation outputs coordinates for the heat deposition to be used in ANSYS thermal simulations.
- Different proximity shielding dimensions would require a new FLUKA simulation to attain accurate values of energy deposition.



## Shielding comparison between FLUKA model and ST file model

| Parameter                  | FLUKA<br>model | New ST<br>model |
|----------------------------|----------------|-----------------|
| Front shielding            | 910 mm         | 500 mm          |
| Rear shielding             | 430 mm         | 500 mm          |
| Sidewall thickness         | 265 mm         | 265 mm          |
| Upper shielding            | 380 mm         | 428 mm          |
| Lower shielding            | 820 mm         | 779 mm          |
| Cooling plate<br>thickness | 160 mm         | 160 mm          |
| Inner area width           | 1050 mm        | 1050 mm         |
| Inner area length          | 1820 mm        | 2000 mm         |
| Inner area height          | 900 mm         | 900 mm          |
| Overall width              | 1580 mm        | 1580 mm         |
| Overall length             | 3160 mm        | 3000 mm         |
| Overall height             | 2260 mm        | 2267 mm         |

#### Red outline = New ST Model



| Model                                  | FLUKA/<br>Thermo | New ST<br>Model | Unit   |
|----------------------------------------|------------------|-----------------|--------|
| Volume                                 | 9.564            | 8.856           | [m^3]  |
| Change                                 | 0%               | -7.41%          | [%]    |
| Estimated<br>energy<br>deposition<br>* | 2353             | 2178            | [W/m3] |
| Total<br>energy<br>deposited           | 22500            | 19291           | [VV]   |

\*Assuming energy deposition scales linearly with volume, and uniform deposition in all directions. Future simulations should show more realistic effects.



## **Real thermal contact conductance**

 Using CMY\*-model to approximate realistic thermal contact conductance.

#### • Dependent on:

- Contact pressure
- Thermal conductance
- Surface roughness
- Youngs modulus
- Asperity surface slope (approximated)

#### \*Cooper-Mikic-Yovanovich



## Simulations with FLUKA model: Water cooled top plate

- Assuming:
  - 30 C inside all pipes to represent ideal conditions with water cooling
  - Water cooling plate on top is cast iron with stainless-steel pipes inside the cast.
    Perfect thermal conductivity.
  - Assumed real conductance calculated from CMY model.
- Conclusion:

SY

Accelerator Systems

- Realistic thermal contact conductance is very low and affects the cooling performance severely.
- Cooling performance can be increased with more contact pressure and/or a copper cooling plate





## Simulations with FLUKA model: Helium cooled top plate

- **Assuming:** 
  - Helium flow in cooling pipes is fully turbulent. At the inlet: 16 bar, 30 g/s, 20 C
  - Cooling plate on top is cast iron with . stainless-steel pipes inside the cast. Perfect thermal conductivity.
  - Assumed real conductance calculated from ٠ CMY model.
- **Conclusion:** 
  - Realistic thermal contact conductance is very low and affects the cooling performance severely.
  - Cooling performance can be increased with more contact pressure and/or a copper cooling plate





SY



## Simulations with FLUKA model: Water cooled top plate and bottom plate

- Added cooling plate top bottom
- Two pipes goes to the top, and two pipes to the bottom, all in the same circuit





## Simulations with FLUKA model: Helium cooled top and bottom plate

#### Assuming:

- Helium flow in cooling pipes is fully turbulent. At the inlet: 16 bar, 30 g/s, 20 C
- Cooling plate on top is cast iron with stainless-steel pipes inside the cast. Perfect thermal conductivity.
- Assumed real conductance calculated from CMY model.

#### Conclusion:

- Realistic thermal contact conductance is very low and affects the cooling performance severely.
- Cooling performance can be increased with more contact pressure and/or a copper cooling plate





### Water results:

|        | Cooling  | Coolant       | Cooling | Cooling   |                   | Thermal   | Max        | Min temp |
|--------|----------|---------------|---------|-----------|-------------------|-----------|------------|----------|
| Figure | Mediur 🔻 | properties 🔽  | circuit | 🔽 plate   | 🔻 Materials 💌     | contacts  | 🕶 temp [(🔽 | [C] 🔽    |
| а      | Water    | Constant 30 C | Lateral | Top only  | All cast iron     | Perfect   | 98.7       | 30       |
| b      | Water    | Constant 30 C | Lateral | Top only  | All cast iron     | Realistic | 207        | 30       |
| С      | Water    | Constant 30 C | Lateral | Top and b | ott All cast iron | Realistic | 92.9       | 30       |





## Perfect contacts with helium

Top and bottom cooling plate

| Figure | Cooling<br>Medium | Coolant<br>properties       | Cooling<br>circuit | Cooling<br>plate  | Materials        | Thermal contacts | Max<br>temp | Min<br>temp |
|--------|-------------------|-----------------------------|--------------------|-------------------|------------------|------------------|-------------|-------------|
| а      | Helium            | 30Cinlet,<br>+30Cper pass   | Lateral            | Top and<br>bottom | All cast<br>iron | Perfect          | 150         | 78.9        |
| b      | Helium            | 30C inlet,<br>+30C per pass | Lateral            | Top only          | All cast<br>iron | Perfect          | 177         | 86.1        |

Top cooling plate





(STI)

### **Real contacts** helium

a

Accelerator Systems

|   | Figure | Cooling<br>Medium | Coolant<br>properties       | Cooling<br>circuit | Cooling<br>plate  | Materials        | Thermal contacts | Max<br>temp<br>[C] ▼ | Min<br>temp<br>[C] 🔽 |
|---|--------|-------------------|-----------------------------|--------------------|-------------------|------------------|------------------|----------------------|----------------------|
| • | а      | Helium            | 30C inlet,<br>+30C per pass | Spiral             | Top only          | All cast<br>iron | Realistic        | 298                  | 77.9                 |
|   | b      | Helium            | 30C inlet,<br>+30C per pass | Lateral            | Top only          | All cast<br>iron | Realistic        | 274                  | 66.6                 |
|   | С      | Helium            | 30C inlet,<br>+30C per pass | Spiral             | Top and<br>bottom | All cast<br>iron | Realistic        | 172                  | 70.4                 |

#### Top and bottom cooling plate

С



#### Top cooling plate

b

## **Findings compacted:**

| Cooling<br>Medium | Coolant<br>propertie<br>s    | Cooling<br>circuit | Cooling<br>plate  | Materials     | Thermal contacts | Max<br>temp [C] | Min<br>temp |
|-------------------|------------------------------|--------------------|-------------------|---------------|------------------|-----------------|-------------|
| Ψ.                | -                            | <b>*</b>           | <b>*</b>          | -             | -                | 4               | [C] 🗸       |
| Helium            | 30Cinlet,<br>+30Cper<br>pass | Spiral             | Top only          | All cast iron | Realistic        | 298             | 77.9        |
| Helium            | 30Cinlet,<br>+30Cper<br>pass | Lateral            | Top only          | All cast iron | Realistic        | 274             | 66.6        |
| Water             | Constant<br>30 C             | Lateral            | Top only          | All cast iron | Realistic        | 207             | 30          |
| Helium            | 30Cinlet,<br>+30Cper<br>pass | Spiral             | Top only          | All cast iron | Perfect          | 177             | 86.1        |
| Helium            | 30Cinlet,<br>+30Cper<br>pass | Spiral             | Top and<br>bottom | All cast iron | Realistic        | 172             | 70.4        |
| Helium            | 30Cinlet,<br>+30Cper<br>pass | Spiral             | Top and<br>bottom | All cast iron | Perfect          | 150             | 78.9        |
| Water             | Constant<br>30 C             | Lateral            | Top only          | All cast iron | Perfect          | 98.7            | 30          |
| Water             | Constant<br>30 C             | Lateral            | Top and bottom    | All cast iron | Realistic        | 92.9            | 30          |



## **Future work**

- Studies with copper plate to improve thermal contact conductance to cooling plate
- Studies with different shielding cut configurations
- Studies with new ST model

- Integration is fine with all copper for shielding
  - Studies with this as well. Should improve cooling performance considerably
- Integration wants to reduce the number of inlets and coolant connections
  - Investigate implementing cooling middle block





home.cern