SiC PIN Update

Jiaqi Zhou², Sen Zhao¹, Xiyuan Zhang¹, Xin Shi¹

Institute of High Energy Physics, CAS
 Jilin University

2025.2.21

DRD3 WG6 SiC-LGAD Meeting

- 4H-SiC PIN Diodes
- Full depletion voltage ~ 96V
- The doping concentration ~ 1.44e14 cm⁻³
- The full depletion depth reaches ~ $27\mu m$
 - The actual active region is only eighty percent of the theoretical value, which is 40 µm

PIN epitaxial structure

- P-type Ohmic contact not very well
 Poor contact between the SiC and metal
- Should optimize the Ohmic process

sampling rate is 100 ps/pt bandwidth is 2 GHZ

When the bandwidth is large, the oscillation is severe, making accurate sampling impossible

rise time

• Charge collection (alpha)

The 5.4MeV alpha particle injection process was simulated by Geant4.
 Tolal energy deposition is 4.4 MeV.

- We suppose that 40 fc is based on low bandwidth, which may have resulted in the loss of high-frequency signals, The signals obtained are all low-frequency signals.
- Other possible is that due to surface trapping and nonionizing energy loss in the device, a portion of the charge will be lost. However, is 50% reasonable?

The full depletion depth reaches ~ $27\mu m$

Question

- We gauss that the filtering and amplification factors of the UCSC circuit board made in China have not reached the ideal values
- Is the bandwidth of the circuit board insufficient, and can optimizing the circuit board solve these two issues?

Andreas Gsponer

UCSC Board Tests

- 4H-SiC detector with C_{det}= 0.5 pF, UV-TCT with ~3 ps jitter
- Achieved 90 ps risetime!
- Eqv. BW = 3.9 GHz
- However, oscillations in signal, esp. for $R_{14} < 82 \Omega$
- Would need a more HF adequate design and HF resistors

5 0	7 0		2, 🚺	M 🍫	â o	Trigg Edge	er 1.64 V Auto	Horizontal 4 ns/	Acq 40 GSa/s	uisition Sample	RT (2024-08
Undo Redo	Help Imag	e Autoset Zi	oom Histogr	Measure FFT	Delete 🔻	175 %	Stop	52.8 ns	1.6 kpts			
92 my Diagran	13: MIT ×		l l			- 112.5 % Diag	ram I: Histog	rami×				
	Azeranada	-	Cul X2 com			100 %						
	40.05		io ns	50 ns	72.85 n	07.7.01						
700m1:	M1 ×		×			01.5 %						
112.mV						75 %						
92 mV						- 62.5 %						
72.mV						- 50 %						
52 mV						- 37 6 30	1					
32.mV						-						
						25.8						
		1.X1 Cu1.X2				12.5 %	1					
-48 m¥					53.525 nr	-32		ALL STREET	34/15 p.	154 pr 173	25 pr 192	S ps 211,75 p
	Current	Max	Min	Mean	RMS	σ (S-dev)	Event count	Wave count				
Meas Group 1 🛛 🔤										P	co ti	mo(1)
High	78.877 mV	153.19 mV	66.229 mV	84.342 mV	84.84 mV	9.1729 mV	10915658	109156	58		SC III	110 (10
Area	8.3/83 pV*s	51./48 pV*s	-38.544 pV*s	7.5929 bV*s	13.034 pV*s	10.594 pV*s	10915658	100150	50	90	%).	90 ps
Rise time	/1.508 ps	235.63 ps	43.36 ps	90.39 ps	91,4/1 ps	14.02 ps	10826236	109156	58	1	<i>(</i> ()).	70 P5
Pail time	434.00 ps	271 49 or	100.78 ps	200.95 m	210.79 ps	19397 ps	10015555	109150	50	The	0	
Pos puise	52 696 or	53 179 or	52 654 ps	52.7 or	57.7	8 5548 or	10915555	109156	58	> Jitt	er : 8	.ops
Slew rate rising	884.39 V/us	1.504 V/ns	263.29 V/us	768.11 V/us	775.4 V/us	105.1 V/us	10826236	109156	58	1/1-2	cor tr	ingan
Meas Group 2										(la	ser u	igger
Mean	-4.8409 mV	18.151 mV	-19.367 mV	-503.69 μV	5.7369 mV	5.7148 mV	10915658	109156	58	wil	ratic	ms)
Meas Group 3 🛛 🔤										VIL	/iauc	113)
σ (S-dev/AC-RMS)	2.9613 mV	3.6305 mV	2.3114 mV	2.85 mV	2.8523 mV	114.14 µV	10915658	109156	58			
Statistics:	Reset											
Cu 1 2 X1		X2	ΔX	1/ΔX	Y1	Y2	ΔY		ΔΥ/ΔΧ			
1 📶 📀 52	1.625 ns	52.775 ns	150 ps	6.6667 GHz	9.83 mV	/ -1.237 r	nV -11.0	67 mV	-73.78 V/µ			
C1	X M1		Histogram1	-					_			
	20 mV/		19.3 ps/									
	C1 11		1000						.2 (3	C4 Ma	ith FFT	Ref Gen
and a second sec	CI-Meas		IVIG I									
	52 mV		Rise time (Math									

НЕРНҮ

In WG6-SiC-LGAD Readout Discussion,We observed that Andreas Gsponer in HEPHY increased the feedback resistor, which enhanced the gain, contrary to our previous simulation results. What could be the reason for this?

Plan and Request

Amplifier board request

Compared to Si, SiC faster saturated electron velocity and smaller signal

- Single test board and Multichannel test board for DC/AC-coupled SiC device (PIN/LGAD)
- <300 ps rising time
- 2 GHz, 22 dB
 - may improve?
- We need higher filtering requirements
- We need higher magnification requirements

- Plan to product a new batch PIN device...
- Could you send us a test board? If that's not possible, may we send our samples to you?