

Nikolina Bunijevac EN/CV/CL





## heating, ventilation, air conditioning











### Research motivation

#### CERN/LHC electricity consumption

Following global sustainability concerns, "pursuing actions and technologies aiming at energy savings and reuse" is listed as one of the main objectives for 2021-2025 at the European Organization for Nuclear Research (CERN). This objective extends to the Cooling and Ventilation group.





### CLASSICAL FEEDBACK CONTROLLER



### CLASSICAL FEEDBACK CONTROLLER



### CLASSICAL FEEDBACK CONTROLLER









### System: Air Handling Unit (HVAC311)



### System: Air Handling Unit (HVAC311)



## System: Air Handling Unit (HVAC311)

Simplified model scheme



#### **Controlled variables**

#### System diagram

### Physics-informed approach



### Modelling: methodology







FFNN



#### System diagram



### AHU Steady state models

#### System diagram



### AHU Steady state models

## Example: cooling coil





## Example: cooling coil & zone



### Optimization



## Optimization

### Optimization

optimization function: estimation of electricity
 consumption for the prediction horizon + penalty

$$J = \sum_{\substack{t \text{ in prediction horizon}}} J[t]$$
$$J[t] = \sum_{k=1}^{Nc} J^{k}(u^{k}[t], x^{k}[t]) / J_{e_{max}} + penalty$$

Optimization

-optimization function: estimation of electricity consumption for the prediction horizon + penalty

$$J = \sum_{\substack{t \text{ in prediction horizon}}} J[t]$$
$$J[t] = \sum_{k=1}^{Nc} J^{k}(u^{k}[t], x^{k}[t]) / J_{e_{max}} + penalty$$

-optimization variables:

- $u^1$  (fresh air damper opening),
- $u^2$  (cooling coil valve),
- $u^3$  (heater command)

-optimization function: estimation of <u>electricity</u> consumption for the prediction horizon + **penalty** 

$$J = \sum_{\substack{t \text{ in prediction horizon}}} J[t]$$
$$J[t] = \sum_{k=1}^{Nc} J^{k}(u^{k}[t], x^{k}[t]) / J_{e_{max}} + penalty$$

-optimization variables:

- $u^1$  (fresh air damper opening),
- $u^2$  (cooling coil valve),
- $u^3$  (heater command)

- constraints:
  - control constraints

| Optimization                                                                                          | $J = \sum_{t \text{ in modulation homizon}} J[t]$                                                                           |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| -optimization function: estimation of electricity<br>consumption for the prediction horizon + penalty | $J[t] = \sum_{k=1}^{Nc} J^k(u^k[t], x^k[t]) / J_{e_max} + penalty$                                                          |
| -optimization variables:                                                                              | $u^1$ (fresh air damper opening),<br>$u^2$ (cooling coil valve),<br>$u^3$ (heater command)                                  |
| <ul> <li>constraints:</li> <li>control constraints</li> </ul>                                         | $0 < u^{k}[t] < 100, k in \{1,2,3\}, \forall t$<br>$u^{2}[t] * u^{3}[t] = 0, \forall t$ .<br>embedded in<br>variable coding |

| Optimization                                                                                                        | $J = \sum_{i=1}^{N} J[t]$                                                                  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| -optimization function: estimation of <u>electricity</u><br>consumption for the prediction horizon + <b>penalty</b> | $J[t] = \sum_{k=1}^{Nc} J^k(u^k[t], x^k[t]) / J_{e_max} + penalty$                         |
| -optimization variables:                                                                                            | $u^1$ (fresh air damper opening),<br>$u^2$ (cooling coil valve),<br>$u^3$ (heater command) |
| <ul> <li>constraints:</li> <li>control constraints</li> </ul>                                                       | $0 < u^{k}[t] < 100, k in \{1,2,3\}, \forall t$<br>$u^{2}[t] * u^{3}[t] = 0, \forall t$ .  |

variable constraints

| Optimization                                                                                                 | $J = \sum_{\substack{t \text{ in prediction horizon}}}$                                    | J[t]                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|
| -optimization function: estimation of electricity<br>consumption for the prediction horizon + <b>penalty</b> | $J[t] = \sum_{k=1}^{Nc} J^{k}(u^{k}[t], x^{k}[t]) / J_{e_{r}}$                             | <sub>nax</sub> + penalty       |
| -optimization variables:                                                                                     | $u^1$ (fresh air damper opening),<br>$u^2$ (cooling coil valve),<br>$u^3$ (heater command) |                                |
| <ul> <li>constraints:</li> <li>control constraints</li> <li>variable constraints</li> </ul>                  | $0 < u^{k}[t] < 100, k in \{1,2,3\}, \forall t$<br>$u^{2}[t] * u^{3}[t] = 0, \forall t$ .  | embedded in<br>variable coding |
|                                                                                                              | $T_{SUPPLY_{MIN}} = 15^{\circ}C < T_{SUPPLY} < T_{SUPPLY_{MAX}} = 30^{\circ}C,$            | penalty when<br>violated       |

 $T_{ZONE_{MIN}} = 21^{\circ}C < T_{ZONE} < T_{ZONE_{MAX}} = 24^{\circ}C.$ 

| Optimization                                                                                                 | $J = \sum_{\substack{t \text{ in prediction horizon}}}$                                    | J[t]                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|
| -optimization function: estimation of electricity<br>consumption for the prediction horizon + <b>penalty</b> | $J[t] = \sum_{k=1}^{N_c} J^k(u^k[t], x^k[t]) / J_{e_r}$                                    | <sub>nax</sub> + penalty       |
| -optimization variables:                                                                                     | $u^1$ (fresh air damper opening),<br>$u^2$ (cooling coil valve),<br>$u^3$ (heater command) |                                |
| <ul> <li>constraints:</li> <li>control constraints</li> <li>variable constraints</li> </ul>                  | $0 < u^{k}[t] < 100, k in \{1,2,3\}, \forall t$<br>$u^{2}[t] * u^{3}[t] = 0, \forall t$ .  | embedded in<br>variable coding |
|                                                                                                              | $T_{SUPPLY_{MIN}} = 15^{\circ}C < T_{SUPPLY} < T_{SUPPLY_{MAX}} = 30^{\circ}C,$            | penalty when<br>violated       |

 $T_{ZONE_{MIN}} = 21^{\circ}C < T_{ZONE} < T_{ZONE_{MAX}} = 24^{\circ}C.$ 

| Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $J = \sum_{t \text{ in use distant hereisen}} J[t]$                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -optimization function: estimation of electricity<br>consumption for the prediction horizon + pena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $J[t] = \sum_{k=1}^{Nc} J^k(u^k[t], x^k[t]) / J_{e_max} + penalty$                                                                                                                     |
| -optimization variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $u^1$ (fresh air damper opening),<br>$u^2$ (cooling coil valve),<br>$u^3$ (heater command)                                                                                             |
| <ul> <li>constraints:</li> <li>control constraints</li> <li>variable constraints</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0 < u^{k}[t] < 100, k in \{1,2,3\}, \forall t$<br>$u^{2}[t] * u^{3}[t] = 0, \forall t$ .<br>embedded in<br>variable coding                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{SUPPLY_{MIN}} = 15^{\circ}C < T_{SUPPLY} < T_{SUPPLY_{MAX}} = 30^{\circ}C, \qquad penalty when violated$ $T_{ZONE_{MIN}} = 21^{\circ}C < T_{ZONE} < T_{ZONE_{MAX}} = 24^{\circ}C.$ |
| -genetic algorithm option opti | timization technique based on evolutionary principles to find<br>utions to complex problems                                                                                            |

## Example: MPC solution



## Example: MPC solution





### Example: MPC solution



### Next step

- thorough comparison between classical controls and MPC
- test zone on larger dataset
- If needed, MPC optimization upgrade for faster convergence



## Discussion

# Extra slides

## MPC for HVAC Modelling upgrade: dataset





FFNN

class SimpleNN(nn.Module):

def \_\_init\_\_(self, input\_size, output\_size, hidden\_size1=5, hidden\_size2=5):
 super(SimpleNN, self).\_\_init\_\_()

self.fc1 = nn.Linear(input\_size, hidden\_size1)
self.fc2 = nn.Linear(hidden\_size1, hidden\_size2)
self.fc3= nn.Linear(hidden\_size2, output\_size)

|                                             | AHU (4 NNs)                       | ZONE (1 NN)          |
|---------------------------------------------|-----------------------------------|----------------------|
| Number of<br>parameters                     | ~50<br>(61, 51, 51, 46)           | 182                  |
| Size of dataset<br>(6:1 training:test)      | 2290                              | 1565                 |
| Individual precision<br>Mean abs error [*C] | ~0.25<br>(0.39, 0.33, 0.09, 0.17) | 0.17<br>(0.25, 0.09) |

### Modelling: methodology - update



#### System diagram



### AHU Steady state

#### System diagram



AHU Steady state

Problems with RNN initialization

## MPC for HVAC: Genetic algorithm: implementation

- prediction horizon: 2h (Ts = 15min  $\rightarrow$  8 points)

- optimization variable binary representation for 1 pt in time:



• bits in total: 8\*12 = 96 bits/optimization

- parameters:

| POP_SIZE        | 60  |
|-----------------|-----|
| NUM_GENERATIONS | 3   |
| CROSSOVER_PROB  | 0.5 |
| MUTATION_PROB   | 0.4 |
| TOURNAMENT_SIZE | 3   |



- temperatures within limits
- advance controls: damper management
- PID: more active components



Results



### Conclusion

- promising results, but too optimistic (savings 77% comparing to 20% in literature)
- improvements:
- improving model:
  - dataset, architecture, training
- improving optimization algorithm:
  - $\,\circ\,$  faster execution  $\,\rightarrow\,$  faster test comparison
- tunning PID for fair comparison



| Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $J = \sum_{t \text{ in use distant hereisen}} J[t]$                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -optimization function: estimation of electricity<br>consumption for the prediction horizon + pena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $J[t] = \sum_{k=1}^{Nc} J^k(u^k[t], x^k[t]) / J_{e_max} + penalty$                                                                                                                     |
| -optimization variables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $u^1$ (fresh air damper opening),<br>$u^2$ (cooling coil valve),<br>$u^3$ (heater command)                                                                                             |
| <ul> <li>constraints:</li> <li>control constraints</li> <li>variable constraints</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0 < u^{k}[t] < 100, k in \{1,2,3\}, \forall t$<br>$u^{2}[t] * u^{3}[t] = 0, \forall t$ .<br>embedded in<br>variable coding                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{SUPPLY_{MIN}} = 15^{\circ}C < T_{SUPPLY} < T_{SUPPLY_{MAX}} = 30^{\circ}C, \qquad penalty when violated$ $T_{ZONE_{MIN}} = 21^{\circ}C < T_{ZONE} < T_{ZONE_{MAX}} = 24^{\circ}C.$ |
| -genetic algorithm option opti | timization technique based on evolutionary principles to find<br>utions to complex problems                                                                                            |