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Research motivation 

12%

88%

CERN/LHC electricity consumption

Cooling and ventilation other

Following global sustainability concerns, “pursuing actions 
and technologies aiming at energy savings and reuse” is 
listed as one of the main objectives for 2021-2025 at the 

European Organization for Nuclear Research (CERN). This 
objective extends to the Cooling and Ventilation group.
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Controls optimization
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Controls optimization
CLASSICAL FEEDBACK CONTROLLER 
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Controls optimization
CLASSICAL FEEDBACK CONTROLLER 
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Controls optimization
CLASSICAL FEEDBACK CONTROLLER MODEL PREDICTIVE CONTROLLER

- prediction horizon

external information
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Modelling
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System: Air Handling Unit (HVAC311)
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System: Air Handling Unit (HVAC311)

Controlled variables
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Physics-informed 
approach



Modelling: methodology 
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Modelling: methodology – black-box

Zone: autoregressive and dynamic

AHU blocks: steady-state
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Modelling: methodology – black-box

Zone: dynamic

AHU blocks: steady-state
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Steady state models

Dynamic model 

AHU

Zone
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Steady state models

Dynamic model 

AHU

Zone
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Example: 
cooling coil
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Example: 
cooling coil &
zone



Optimization
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Optimization
-optimization function: estimation of electricity 
consumption for the prediction horizon + penalty

-optimization variables:

- constraints:
◦ control constraints       

◦ variable constraints 

-genetic algorithm optimization technique based on evolutionary principles to find 
solutions to complex problems

𝑢1 (fresh air damper opening), 
𝑢2 (cooling coil valve), 
𝑢3 (heater command)

binary

embedded in 
variable coding

penalty when 
violated
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Example: 
MPC solution 

4h
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4h

Example: 
MPC solution 
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4h

Example: 
MPC solution 



Next step

◦ thorough comparison between 
classical controls and MPC

◦ test zone on larger dataset

◦ If needed, MPC optimization 
upgrade for faster convergence 
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Discussion 
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Extra slides 
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MPC for HVAC
Modelling upgrade: dataset
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Modelling: methodology – black-box 

AHU (4 NNs) ZONE (1 NN)

Number of 
parameters

~50
(61, 51, 51, 46)

182

Size of dataset
(6:1 training:test)

2290 1565

Individual precision
Mean abs error [*C]

~0.25
(0.39, 0.33, 0.09, 0.17)

0.17
(0.25, 0.09)
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Modelling: methodology - update

Steady state
Prediction in next 
point in time

AHU - fast Zone - slow
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Steady state

Prediction in next 
point in time

AHU

Zone
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Steady state

Prediction in next 
point in time

AHU

Zone

Problems with 
RNN initialization 
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MPC for HVAC:
Genetic algorithm: implementation
- prediction horizon: 2h (Ts = 15min → 8 points)

- optimization variable binary representation for 1 pt in time:

◦ bits in total: 8*12 = 96 bits/optimization  

- parameters:
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- temperatures within limits

- advance controls: damper management

- PID: more active components 
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MPC for HVAC
Results

- constraints violated 

- unusual system response

- unusual PID response
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Conclusion
- promising results, but too optimistic (savings 77% comparing to 20% in literature)

- improvements:

◦ improving model:

◦ dataset, architecture, training

◦ improving optimization algorithm:

◦ faster execution → faster test comparison 

◦ tunning PID for fair comparison
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Optimization
-optimization function: estimation of electricity 
consumption for the prediction horizon + penalty

-optimization variables:

- constraints:
◦ control constraints       

◦ variable constraints 

-genetic algorithm optimization technique based on evolutionary principles to find 
solutions to complex problems

𝑢1 (fresh air damper opening), 
𝑢2 (cooling coil valve), 
𝑢3 (heater command)

binary

embedded in 
variable coding

penalty when 
violated
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