Energy deposition in Q0

Elena Wildner

19/04/07

Strategy

- 1. Define a TAS to protect the Q0
- 2. Optics: $\beta^* = 0.25m$
- 3. Calculate, with some optimization of the TAS layout, the heat deposition in the Q0 magnets
- 4. Check experiment

Point 4 still to be treated

Layout of scenario

Modeling the Quads

β-dependence of opening

TAS Aperture, 3 cases chosen

TAS opening: results

Deposition [W]	Q01	Q02	TAS
Small Aperture	123	151	1518
Large Aperture	821	377	253
Staggered Aperture	114	150	1582

Back to experiment, JD hole and Flange

Has to be evaluated with complete ATLAS model. Scoring in the specific sensitive ATLAS regions!

Energy deposition in coil

0.01

1e-04

1e-06

1e-08

Aim: < 39 mW/cm3 Margin to be added

With and without magnetic field

Liner, 2 cm, iron

mW/cm3

Necessary opening in Q0 for beam (diameter): 3.5 cm With liner the opening is 5 cm

The TAS Aperture

Power Deposition [W]	Q01	Q02	TAS
Staggered Aperture (liner)	198 (100)	331 (150)	1530
Staggered Aperture, liner & solenoid field	197	330	1550
Staggered Aperture, no liner	114	150	1582

Without and with Liner

Power in the cables: Q01

Power in the cables: Q02

Inner cable of Q02

FLUKA model of ATLAS: JT

Summary 1

- Staggered TAS with a liner in the Q0 seems to be a reasonable solution:
 - magnet developers can continue
- Power deposition in the coil will be below 39 mW/cm3 (limit for quench) with some optimization. Margin needed.
- Solenoid field: no significant impact
 Crossing angle: no significant impact
 Tungsten TAS: no significant impact

Summary 2

- Shorter TAS (1 m) put at same distance (back edge) and 2 m closer to IP with adapted opening: more heat in magnet
- After optimization, more particles in FLUKA runs for better statistics necessary
- ATLAS model to be run with their scoring in their regions of interest. Compare:
 - Model without new TAS
 - Model with new TAS