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Ultra-peripheral collisions (UPCs)

Nuclear collisions can be divided in to different centralities 

● Correspond to the amount of overlap between the nuclei

Ultra-peripheral: No overlap between the colliding nuclei

● Nucleons color neutral: No interaction through QCD

● Protons are charged objects: 

Can emit photons even when far away!

● Photon virtuality Q2   1/b~ 2  ≈  0  

⟹  “Quasi-real”
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Why UPCs?

● UPCs allow us to probe photon-initiated 

processes

Complementary range in (Q2, x)-plane to 

electron–ion colliders

● Can access higher energy ⟺  smaller x

● Q2 ≈ 0  ⟹ Momentum scale completely 

determined by the process 

UPCs in heavy-ion collisions:

Access to nuclear targets before EIC
x
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Baltz et al [0706.3356]

https://inspirehep.net/literature/753911
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Factorization in UPCs

Due to the large impact parameter, we can factorize the 

photon emission from the rest of the process:

● n(ω) = photon flux for energy ω
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Equivalent photon approximation

Bertulani, UPC2023

Charged nucleus moving with a high energy:

Creates a strong electromagnetic field with transverse polarization

⟹ Cannot be distinguished from real photons!

Vidović et al, Phys. Rev. C 47, 2308 (1993)

Photon flux for a given impact parameter b:

where F  is the form factor of the nucleus

● Reduces to Weizsäcker–Williams flux for a point charge

https://indico.cern.ch/event/1263865/contributions/5667686/attachments/2769562/4825212/Bertulani-UPC-2023WS.pdf
https://inspirehep.net/literature/337347
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γ γ  processes

ℓ-

ℓ-
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Dilepton production in γ γ 

Breit–Wheeler process: γ γ → e− e+ 
● Forbidden in classical electromagnetism

● “Non-linear” effect of QED

● Proposed in 1934, yet experimentally elusive!

● “First” observed in UPCs at STAR

STAR collaboration [1910.12400]

Breit, Wheeler, Phys.Rev. 46 (1934) 12, 1087-1091

https://inspirehep.net/literature/1894992
https://inspirehep.net/literature/854971
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Dark photons in the Breit–Wheeler process
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Xu et al [2211.02132]

Additional contribution from dark photons A' 

Effective dark photon coupling:

Bounds for the mixing strength ϵ and dark 

photon mass MA' from UPCs

https://inspirehep.net/literature/2176717
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Dilepton production in γ γ 

Di-tau production: γ γ → τ+ τ− 

● Access to the anomalous magnetic moment  aτ = (gτ−2)/2 
● First results competitive with other measurements — expected to improve with Run-3 data

ATLAS collaboration [2204.13478]
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https://inspirehep.net/literature/2074134
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Light-by-light scattering (γ γ → γ γ )

ATLAS collaboration, 1702.01625QED in extreme conditions

● Violation of the superposition principle in 

classical electromagnetism

● Can be used to test the standard model and 

search for BSM physics
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 Kłusek-Gawenda, Lebiedowicz, and Szczurek [1601.07001]

https://inspirehep.net/literature/1512305
https://inspirehep.net/literature/1416991
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Search for axion-like particles in light-by-light scattering
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( * ) Baldenegro et al [1903.04151]

Axion-like particles:

would lead to an increase of the cross section 

through an additional Feynman diagram

https://inspirehep.net/literature/1724460
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γ p and γ A processes
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Exclusive vector meson production

● Vector mesons: same quantum as photon  JPC= 1−− 
● No quantum numbers exchanged with the target: 

a "pomeron"

● Real photon Q2= 0:

● Perturbative scale given by the meson mass MV 
● In practice: 

Perturbative only for heavy mesons
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Sensitivity to gluon distribution
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Jones et al [1610.02272]

● Leading order: couples to gluons in the target

● Depends on the gluon density squared

Ryskin, Z.Phys.C 57 (1993) 89-92

Exclusive process: access generalized parton distributions

● Often modeled with PDFs using the Shuvaev transform

Shuvaev et al [hep-ph/9902410]

https://inspirehep.net/literature/1490679
https://inspirehep.net/literature/334350
https://inspirehep.net/literature/495596
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Nuclear shadowing

Modification of PDFs in nuclei:

Small x (x < 0.01): shadowing region

● Suppression of the cross section from multiple scatterings

EPPS21 [2112.12462]

https://inspirehep.net/literature/1996922
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Two-way ambiguity
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CMS collaboration [2303.16984]

● ωi = photon energy from nucleus i 

●  nγ A  = photon flux

One cross section, two unknowns 

⟹ cannot distinguish the emitter from the target
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https://inspirehep.net/literature/2648536
https://inspirehep.net/literature/2666011
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Determining the direction with neutrons

● nin jn
 γ A  = photon flux with i,j neutrons in the forward and back direction

Solution: event tagging using forward neutrons

● Electromagnetic dissociation of a nucleus from 

independent photon exchanges

System of three equations:

● 0n0n: no neutrons on either side

● 0nXn + Xn0n: neutrons on one side only

● XnXn: forward neutrons on both sides
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Energy dependence
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Solving the two-way ambiguity:  Rapidity spectrum ⟹ Energy dependence

● A clearer physical picture of the process

https://inspirehep.net/literature/2666011
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Small x: Dipole picture
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High energy:

Interaction with the target is an 

instantaneous shock wave

Factorization of the process into three parts:

1) Photon fluctuates into a quark–antiquark dipole

2) Dipole interacts with the target

3) Formation of the vector meson

⟹  Photon wave function (perturbative)

⟹ “Dipole amplitude” N  (non-perturbative)

⟹  Meson wave function (non-perturbative)
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Color-glass condensate (CGC)

Description of the target as a dense gluonic object

● Dense ⟹ Neglect quantum effects

● Can think in terms of classical color fields

● McLerran–Venugopalan model: 

Color fluctuations with a Gaussian weight

Interaction with the target: resum eikonal scatterings to all orders ⟹ a Wilson line!

Dipole amplitude: most common combination of Wilson lines that appears in physical quantities

McLerran, Venugopalan [hep-ph/9309289 ]

https://inspirehep.net/literature/358358
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Energy evolution at small x 

(DGLAP)

(B
K
)

Perturbative energy evolution for the dipole amplitude: 

Balitsky–Kovchegov equation

● Y  = rapidity ( ~ energy)

● Non-linear evolution:

Leads to gluon saturation 

⟹ Slows down the evolution of the dipole amplitude

● Without non-linear term: BFKL evolution
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Probe for saturation
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Compare linear (BFKL) and non-linear (BK) evolution: Test for saturation effects!

● Protons: BFKL and BK close ⟹ No sign of saturation (linear behavior in logarithmic plot)

● Lead: Energy dependence very different ⟹  Saturation?

● Especially clear difference in the nuclear modifcation ratio RPb 
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https://inspirehep.net/literature/2851212
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Coherent and incoherent production
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Krelina, Goncalves, Cepila [1905.06759]

We can further divide diffractive processes into two categories:

1) Coherent production

Target stays intact

2) Incoherent production

Target dissociates

Very different dependence on the momentum transfer t! 

https://inspirehep.net/literature/1735221
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Good –Walker picture

How can we describe coherent and incoherent production from the theory?

Approach by Good and Walker: think in terms of quantum states

Good, Walker, Phys.Rev. 120 (1960) 1857-1860

In terms of color-glass condensate:

1) Coherent: probe the “average” color-field configuration target

2) Incoherent: probe “variance” of the color fields 

https://inspirehep.net/literature/9375
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Nuclear geometry in the transverse plane
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STAR collaboration [1702.07705]

Diffractive process:

t-spectrum provides information about transverse structure of the target

~ distribution of nucleons inside the heavy nucleus

Shape similar to Woods–Saxon

https://inspirehep.net/literature/1515028
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Quantum interference in the decay products

Mäntysaari et al [2310.15300]
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Two-way ambiguity ⟹ Quantum interference effects

● ∆ Φ   = angle between P  and q 

● Information about the target deformations

Woods–Saxon with an angle-dependent radius:

https://inspirehep.net/literature/2713634
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Target fluctuations
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Mäntysaari, Salazar, Schenke [2207.03712]Mäntysaari, Schenke [1603.04349]

● Target geometry fluctuations event-by-event: Important for incoherent production

● Example: “hot spot” model

Gluonic density concentrated around valence quarks

https://inspirehep.net/literature/2107896
https://inspirehep.net/literature/1427435
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Dijet production in γ + A 
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Two contributions:

1)  Direct

2)  Resolved
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● Can be used to probe nuclear PDFs

Comparisons at LO:

● Theory underpredicts the cross section in the 

shadowing region (x< 0.01)

● Some nPDFs overpredict anti-shadowing region 

https://inspirehep.net/literature/2829427
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Future measurements: Open charm and bottom production

Michele Innocenti, Diffraction and gluon saturation at the EIC and the LHC (2024)

Inclusive γ + A: structure functions at Q2= 0 

● Need heavy quarks (c or b) for a perturbative scale

● Access to nuclear structure functions before EIC

Data analysis still on-going

● Distinguishing from background non-trivial

https://indico.ectstar.eu/event/208/contributions/4754/attachments/3110/4382/20240611_ECTTrento.pdf
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UPC workshop

UPC 2025UPC 2023

https://indico.global/event/9992/overview
https://indico.cern.ch/event/1263865/
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Summary

● UPCs allow us to measure process with quasi-real photons in the initial state

● Energy range beyond DIS experiments

● Photon–photon processes:

● Access non-linear region of QED

● Search for BSM physics

● Photo–nuclear processes:

● Both proton and heavy nuclei as targets

● Can measure nuclear shadowing for small x 

● Diffractive processes: access to nuclear geometry in the transverse plane
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