

Go-Forward workshop, February 28, 2025

Constraint on initial conditions from non-linear causality

Tetsufumi Hirano (Sophia Univ.) Collaborator: Tau Hoshino (Sophia Univ.)

Based on T. Hoshino, TH, Phys. Rev. C 111, 014913 (2025), arXiv:2412.02405[nucl-th].

Outline

- Introduction
 - Nonlinear causality of fluid dynamics
 - Example of causality violation
 - Matching initial conditions
 - Is QGP fluid description valid after all?
- Model
 - Equation of motion in 1D
 - Equation of state and transport coefficient
 - Behavior of solutions

- Results
 - Necessary conditions in 1D
 - Sufficient conditions in 1D
 - Constraint on inverse Reynolds number
 - Dynamical violation of causality
 - Constraint on initial condition
 - Constraint from measurement
 - Pocket formulae of minimum initial time and maximum energy density
- Summary

Introduction

Discovery of perfect fluidity announced in 2005

share: f 🗙 in 🔒

Newsroom Media & Communications Office

Newsroom Photos • Videos Fact Sheets Lab History News Categorie

Contact: Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted - raising many new questions

April 18, 2005

TAMPA /L - The four detector groups conducting research at the <u>Belakinstic Heavy ion Collider</u> (RHIC) - a ginat atom 'smasher' located at the U.S. Department of Energy's Brookhaven National Laboratory - say they've created a new state of hot, dense matter out of the quarks and glowns that are the basic particles of atomic nuclei, but it is a state quite afferent and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of firee quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a figuid.

https://www.bnl.gov/newsroom/ news.php?a=110303

Precision QGP

spin/magneto hydrodynamics, Bayesian analysis,

QGP fluids as thermal media

thermal photon/dilepton jet quenching, heavy quark(onium) Validation of QGP fluidity

Nonlinear causality of fluid dynamics

Linearized 2nd order hydro under static equilibrium background $(\Pi = 0, \pi^{\mu\nu} = 0, u^{\mu} = 0)$

causality √

As long as large relaxation time

W.A. Hiscock, L. Lindblom, Annals of Physics 151, 466 (1983).

2nd order dissipative hydrodynamics in nonlinear regime

causality ?

F.S. Bemfica *et al.*, Phys. Rev. Lett. **126**, 222301 (2021).

Characteristic equation Hydro eqs. as quasi-linear PDE $A^{\alpha}(\Psi)\nabla_{\alpha}\Psi = F(\Psi)$ $\Psi = (e, u^{\mu}, \Pi, \pi^{0\mu}, \pi^{1\mu}, \pi^{2\mu}, \pi^{3\mu})^{\mathrm{T}}$ $A^{\alpha}(\Psi)$: 22-by-22 coefficient matrix $F(\Psi)$: 22nd order column vector without any derivatives

Characteristic eqs.

$$det(A^{\alpha}\xi_{\alpha}) = 0,$$

where $\xi^{\alpha} = \nabla^{\alpha}\Phi(x)$

 $\rightarrow \xi^{\alpha}$ regarded as gradient of characteristic hypersurface (next slide)

Characteristic velocity

Normal vector of characteristic surface \rightarrow (Light-like or) space-like vector

$$\xi^{\alpha} = \frac{bu^{\alpha} + a^{\alpha}}{\underset{\text{-like}}{\overset{\text{time space}}{\overset{\text{space}}{\overset{\text{like}}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}}{\overset{\text{like}}{\overset{\text{like}}}{\overset{\text{like}}{\overset{\text{like}}}{\overset{\text{like}}{\overset{\text{like}}{\overset{\text{like}}}{\overset{\text{like}}{\overset{\text{like}}}{\overset{\text{like}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}{\overset{\text{like}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

$$\Phi(x) = \text{const.}$$

$$t$$

$$\xi^{\alpha} = \nabla^{\alpha} \Phi$$

$$x$$

 $0 \le k(=-b^2/a \cdot a) \le 1, \ 0 \le k = v_c^2 \le 1$ v_c^2 : Characteristic velocity

* $g_{\mu\nu} = \text{diag}(1, -1, -1, -1)$ Speed of light: c = 1

W.A. Hiscock and T.S. Olson, Phys. Lett. A **141**, 125 (1989); F.S. Bemfica *et al.*, Phys. Rev. Lett. **126**, 222301 (2021).

Conditions from nonlinear causality Necessary conditions: $0 \le v_c^2 \le 1$ v_c : characteristic velocity (in a special case) Sufficient conditions: $g(v_c^2 > 1) > 0$ $g(v_c^2 < 0) < 0$ + additional $g(v_c^2)$: third-degree polynomial

F.S. Bemfica et al., Phys. Rev. Lett. 126, 222301 (2021).

 $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$ $F_{i}(e, p, \Pi, \pi^{\mu\nu}, \eta, \zeta, \cdots) \geq 0$

Example of causality violation

Red: Acausal ← Does not satisfy necessary conditions
Blue: Causal ← Satisfy sufficient conditions

- Violations of causality

 → in the early stage and/or near the edge
- Likely to violate causality far from equilibrium

C. Plumberg *et al.*, Phys. Rev. C **105**, L061901 (2022).

Is QGP fluid description valid after all?

M.P. Heller and M. Spaliński, Phys. Rev. Lett. 115, 072501 (2015).

Hydrodynamic attractor solution \rightarrow Is fluid dynamics far from equilibrium justified? \rightarrow Are (almost) any initial conditions acceptable? Purpose Scrutinize validation of 1D expanding fluids from

Model

Equation of motion in 1D expansion

Balance eq.+ BRSSS eq. with boost invariant solutions

R. Baier *et al.*, JHEP **04**, 100 (2008). J.D. Bjorken, Phys. Rev. D **27**, 140 (1983).

$$\tau \frac{d}{d\tau} e = -e - p(e) + \phi$$

$$\tau_{\pi} \frac{d}{d\tau} \phi = \frac{4\eta}{3\tau} - \phi - \frac{4\tau_{\pi}}{3\tau} \phi + \frac{\lambda}{2\eta^2} \phi^2$$

e: energy density *p*: pressure $\phi = \pi^{00} - \pi^{33}$: shear pressure η: shear viscosity $τ_π$: relaxation time λ: 2nd order transport coefficient

Equation of state and transport coefficient EoS 1: Conformal EoS (default) EoS 2: Lattice EoS

$$p(e) = \frac{1}{3}e$$

A. Bazavov *et al.*, Phys. Rev. D **90**, 094503 (2014).

 $\frac{\text{Transport coefficients}}{P. \text{ Kovtun et al., Phys. Rev. Lett. 94, 111601 (2005): R. Baier et al., JHEP 04, 100 (2008).}}$ $\frac{\eta}{s} = \frac{1}{4\pi}, \quad \tau_{\pi}T = \frac{2 - \ln 2}{2\pi}, \quad \frac{\lambda T}{\eta} = \frac{1}{2\pi}$

Behavior of solutions

"Any" initial conditions **Hydrodynamization Attractor solution** Local equilibrium ($\phi = 0$) Acceleration of hydrodynamization due to ϕ^2 term in EoM

Results

Necessary conditions in 1D expansion

$$\eta \ge 0 \qquad \frac{\eta}{\tau_{\pi}} \ge 0 \qquad e+p-\frac{\eta}{\tau_{\pi}} \ge 0$$
$$e+p-\frac{\phi}{\tau_{\pi}} \ge 0$$
$$e+p+\phi-\frac{\eta}{\tau_{\pi}} \ge 0$$
$$\left(e+p-\frac{\phi}{2}\right)c_{s}^{2} + \frac{4}{3}\left(-\frac{\phi}{2}\right) + \frac{4\eta}{3\tau_{\pi}} \ge 0 \qquad \left(e+p-\frac{\phi}{2}\right)(1-c_{s}^{2}) + \frac{2}{3}\phi - \frac{4\eta}{3\tau_{\pi}} \ge 0$$
$$\left(e+p+\phi\right)c_{s}^{2} + \frac{4}{3}\phi + \frac{4\eta}{3\tau_{\pi}} \ge 0 \qquad \left(e+p+\phi\right)(1-c_{s}^{2}) - \frac{4}{3}\phi - \frac{4\eta}{3\tau_{\pi}} \ge 0$$

17

Sufficient conditions in 1D expansion $\phi > 0$ case

$$e + p - \frac{\phi}{2} - \frac{\eta}{\tau_{\pi}} \ge 0$$
 $\left(e + p - \frac{\phi}{2}\right)c_s^2 - \frac{2}{3}\phi + \frac{\eta}{3\tau_{\pi}} \ge 0$

$$\frac{4}{3}\left(\phi + \frac{\eta}{\tau_{\pi}}\right) + \left(\frac{1}{2} + c_{s}^{2}\right)\phi + \frac{3c_{s}^{2}\phi^{2}}{e + p - \frac{\phi}{2} - \frac{\eta}{\tau_{\pi}}} \le (e + p)(1 - c_{s}^{2})$$

$$\left(\frac{\eta}{\tau_{\pi}}\right)^{2} - 3c_{s}^{2}\phi^{2} \ge 0$$

$$\left(e + p - \frac{\phi}{2}\right)c_{s}^{2} + \frac{4}{3}\left(-\frac{\phi}{2} + \frac{\eta}{\tau_{\pi}}\right) \ge \frac{(e + p + \phi)^{2}\left(e + p - \frac{\phi}{2} + \frac{2\eta}{\tau_{\pi}}\right)}{3\left(e + p - \frac{\phi}{2}\right)^{2}}$$

Sufficient conditions in 1D expansion $\phi < 0$ case

$$e + p - \phi - \frac{\eta}{\tau_{\pi}} \ge 0$$
 $(e + p + \phi)c_s^2 + \frac{4}{3}\phi + \frac{\eta}{3\tau_{\pi}} \ge 0$

$$\frac{4}{3}\left(-\frac{\phi}{2}+\frac{\eta}{\tau_{\pi}}\right) - \left(1+\frac{1}{2}c_{s}^{2}\right)\phi + \frac{3c_{s}^{2}\phi^{2}}{e+p+\phi-\frac{\eta}{\tau_{\pi}}} \leq (e+p)(1-c_{s}^{2})$$

$$\left(\frac{\eta}{\tau_{\pi}}\right)^{2} - 3c_{s}^{2}\phi^{2} \geq 0$$

$$(e+p+\phi)c_{s}^{2} + \frac{4}{3}\left(\phi+\frac{\eta}{\tau_{\pi}}\right) \geq \frac{\left(e+p-\frac{\phi}{2}\right)\left(e+p+\phi+\frac{2\eta}{\tau_{\pi}}\right)}{3(e+p+\phi)}$$

Constraint on inverse Reynolds number

Necessary conditions $-0.47 \le \frac{\phi}{e+p} \le 0.23$

Sufficient conditions $-0.07 \le \frac{\phi}{e+p} \le 0.07$

Inverse Reynolds number $Re^{-1} \equiv \frac{|\phi|}{e+p}$ \leftarrow constrained from nonlinear causality ¹⁹

Dynamical violation of causality

→ Necessity of nonequilibrium description

Constraint on initial conditions

 ${}^{\exists}\tau_{0,\min} \approx 5.3\tau_{\pi 0}$

 $^{\exists}e_{0,\min} \sim 10 \text{ GeV/fm}^3$ ($\tau_0 = 0.8 \text{ fm}$)

 $\tau_{0,\min} \sim 1 \text{ fm}, e_{0,\max} \sim 5 \text{ GeV/fm}^{3}$

 $\tau_{0,\min} \sim 0.7 \text{ fm}, e_{0,\max} \sim 20 \text{ GeV/fm}^3$

nyan *et al*.

(CMS),

Phys

Rev

Lett.

109

152303

22

Pocket formulae of minimum initial time

Results with lattice EoS

Softer EoS \rightarrow Smaller sound velocity \rightarrow Tend to satisfy conditions

Summary

We scrutinized the initial conditions in 1D expansion from nonlinear causality.

- Nonlinear causality constrains the inverse Reynolds number
 - $Re^{-1} < 0.23$ From necessary conditions $Re^{-1} < 0.07$ From sufficient conditions
- Available regions of initial conditions from nonlinear causality
 - No hope for hydrodynamization
 → Need nonequilibrium description
 - Insufficient to start from local equilibrium at early time
 - Existence of minimum time and maximum energy density with a help of Bjorken energy density

Transport coefficient dependence in 1D

$$\tau_{\pi} = c' \frac{2 - \ln 2}{2\pi T}$$
$$\eta = c \frac{s}{4\pi}$$

Violation of causality in Landau frame in the 2nd order theory when $\tau_{\pi} \rightarrow 0$

Y. Suichi, bachelor thesis, Sophia University (2025).

Transport coefficient dependence of conditions

(1)
$$\frac{\phi}{e+p} \ge -1 + \frac{c}{c'} \frac{1}{2(2-\ln 2)}$$

(2) $\frac{\phi}{e+p} \le 2 - \frac{c}{c'} \frac{3}{2-\ln 2}$

(3)
$$\frac{\phi}{e+p} \le \frac{2}{5} + \frac{c}{c'} \frac{4}{5(2-\ln 2)}$$

(4)
$$\frac{\phi}{e+p} \ge -\frac{1}{5} - \frac{c}{c'} \frac{2}{5(2-\ln 2)}$$

(5) $\frac{\phi}{c} \ge -2 + \frac{c}{c'} \frac{2}{5(2-\ln 2)}$

b)
$$\frac{r}{e+p} \ge -2 + \frac{r}{c'} \frac{1}{2 - \ln 2}$$

(6)
$$\frac{\phi}{e+p} \le 1 - \frac{c}{c'} \frac{1}{2 - \ln 2}$$

Y. Suichi, bachelor thesis, Sophia University (2025). ²⁹

Acausality of the first order relativistic dissipative equations

The "first" order theories (a.la. Eckart/Landau-Lifshitz) \rightarrow Entropy current with the first order terms in dissipative currents ($s^{\mu} = s_0 u^{\mu} + q^{\mu}/T$)

Dispersion relation against linear perturbation

E.g.) Transverse mode ($\mathbf{k} \perp \mathbf{v}$): $\omega = -i \frac{\eta}{e+P} k^2$

Diffusive → Infinite characteristic speed → Acausal! "Density frame!?" ← No need for Landau matching condition??? F.S. Bemfica *et al.*, Phys. Rev. D 98, 104064 (2018), P. Kovtun, JHEP 10, 034 (2019).

Conformal fluids in Bjorken expansion Balance eq. (Landau frame) and EoS

$$\partial_{\mu}T^{\mu\nu} = 0, \quad T^{\mu\nu} = eu^{\mu}u^{\nu} - P(g^{\mu\nu} - u^{\mu}u^{\nu}) + \pi^{\mu\nu}, \qquad P = e/3$$

Constitutive eq. (BRSSS eq. with relevant terms in Bjorken expansion

$$\tau_{\pi} D \pi^{\langle \mu \nu \rangle} + \pi^{\mu \nu} = 2 \eta \nabla^{\langle \mu} u^{\nu \rangle} - \frac{4}{3} \tau_{\pi} \theta \pi^{\mu \nu} + \frac{\lambda_1}{\eta^2} \pi^{\langle \mu}_{\ \rho} \pi^{\nu \rangle \rho}$$

 $\frac{d}{d\tau}e = -\frac{4}{3\tau}e + \frac{1}{\tau}\phi,$

R. Baier et al., JHEP 0804, 100 (2008).

Boost invariant flow
$$u^{\mu} = (\cosh \eta_s, 0, 0, \sinh \eta_s)$$

$$\left(1+\tau_{\pi}\frac{d}{d\tau}\right)\phi = -\frac{4\tau_{\pi}}{3\tau}\phi + \frac{4\eta}{3\tau}, \quad \phi = \pi^{00} - \pi^{33}$$
$$\Rightarrow P_{L} = \frac{e}{3} - \phi$$

*Ignore ϕ^2 term for the moment by putting $\lambda_1 = 0$ 31 Variable transformation "Conformal time": $w = \tau T$ "Equilibrium measure": $f = \frac{3}{2}\tau \frac{1}{w} \frac{dw}{d\tau}$

$$C_{\tau\pi}wf\frac{df}{dw} + 4C_{\tau\pi}f^2 + \left(\frac{2}{3}w - \frac{32}{9}C_{\tau\pi}\right)f - C_{\eta} + 4C_{\tau\pi} - \frac{3}{2}w = 0$$

Transport coefficients: $\eta = C_{\eta}s$, $\tau_{\pi} = \frac{C_{\tau\pi}}{T}$

Note 1: In ideal hydrodynamics, $w \propto \tau^{2/3}$ from $T \propto \tau^{-1/3}$ Note 2: Different normalization employed for f

Derivation of equilibrium measure in conformal + boost invariant flow

Attractor and repulsive line

Square of characteristic velocity

Causality of fluid dynamics

Causality of second order hydrodynamics under static equilibrium background in linear perturbation $\Pi = 0, \qquad \pi^{\mu\nu} = 0, \qquad u^{\mu} = 0$ bulk pressure shear stress four velocity See, e.g., W.A. Hiscock, L. Lindblom, Annals of Physics 151, 466 (1983). \rightarrow Effects of transport coefficients in modern second order constitutive eqs. ?

$$\delta_{\pi\pi}\pi^{\mu\nu}\theta, \qquad \tau_{\pi\pi}\pi^{\langle\mu}{}_{\alpha}\sigma^{\nu\rangle\alpha}, \qquad \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu}$$

→ Need to go beyond linear regime to capture full nonlinearity of relativistic dissipative hydrodynamic equation

Conditions for non-linear causality

Quasi-linear PDE $A^{\alpha}(\Psi)\nabla_{\alpha}\Psi = F$

Characteristic eqs. det $(A^{\alpha}\xi_{\alpha}) = 0, \ \xi^{\alpha} = \nabla^{\alpha}\Phi(x)$

The system is causal if* <u>Condition 1</u>: The roots of characteristic equations $\xi^0 = \xi^0(\xi^i)$ are real. <u>Condition 2</u>: The normal vector ξ^{α} of a characteristic surface is space-like (or light-like) so that the surface $\Phi(x) = \text{const.}$ is time-like.

 $|\xi^{\alpha} = bu^{\alpha} + a^{\alpha}, \quad \xi \cdot \xi = b^2 + a \cdot a \le 0, \quad 0 \le k(=-b^2/a \cdot a) \le 1$

*There exists a mathematically rigorous definition of causality.

F.S. Bemfica *et al.*, Phys. Rev. Lett. **126**, 222301 (2021). ₃₇

Necessary conditions in DNMR

$$\begin{split} (2\eta + \lambda_{\pi\Pi}) - \frac{1}{2} \tau_{\pi\pi} |\Lambda_1| \geq 0 \\ \\ \frac{1}{2\tau_{\pi}} (2\eta + \lambda_{\pi\Pi}\Pi) + \frac{\tau_{\pi\pi}}{4\tau_{\pi}} (\Lambda_a + \Lambda_a) \geq 0 \\ \\ e + P_s + \Pi - \frac{1}{2\tau_{\pi}} (2\eta + \lambda_{\pi\Pi}\Pi) - \frac{\tau_{\pi\pi}}{4\tau_{\pi}} \Lambda_3 \geq 0 \\ \\ e + P_s + \Pi + \Lambda_a - \frac{1}{2\tau_{\pi}} (2\eta + \lambda_{\pi\Pi}\Pi) - \frac{\tau_{\pi\pi}}{4\tau_{\pi}} (\Lambda_d + \Lambda_a) \\ \\ \frac{1}{2\tau_{\pi}} (2\eta + \lambda_{\pi\Pi}\Pi) + \frac{\tau_{\pi\pi}}{2\tau_{\pi}} \Lambda_d + \frac{1}{6\tau_{\pi}} [2\eta + \lambda_{\pi\Pi}\Pi + (6\delta_{\pi\pi} - \tau_{\pi\pi})\Lambda_d] + \frac{\zeta + \delta_{\Pi\Pi}\Pi + \lambda_{\Pi\pi}\Lambda_d}{\tau_{\pi}} + (e + P_s + \Pi + \Lambda_d)c_s^2 \geq 0 \\ \\ e + P_s + \Pi + \Lambda_d - \frac{1}{2\tau_{\pi}} (2\eta + \lambda_{\pi\Pi}\Pi) - \frac{\tau_{\pi\pi}}{2\tau_{\pi}} \Lambda_d - \frac{1}{6\tau_{\pi}} [2\eta + \lambda_{\pi\Pi}\Pi + (6\delta_{\pi\pi} - \tau_{\pi\pi})\Lambda_d] - \frac{\zeta + \delta_{\Pi\Pi}\Pi + \lambda_{\Pi\pi}\Lambda_d}{\tau_{\pi}} - (e + P_s + \Pi + \Lambda_d)c_s^2 \geq 0 \\ \end{split}$$

F.S. Bemfica *et al.*, Phys. Rev. Lett. **126**, 222301 (2021). ₃₈

Sufficient conditions in DNMR

 $\tau_{\pi\pi} \leq 6\delta_{\pi\pi}$ $(e + P_s + \Pi - |\Lambda_1|) - \frac{1}{2\tau} (2\eta + \lambda_{\pi\Pi} \Pi) - \frac{\tau_{\pi\pi}}{2\tau} \Lambda_3 \ge 0$ $(2\eta + \lambda_{\pi\Pi}\Pi) - \tau_{\pi\pi}|\Lambda_1| > 0$ $\frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} + c_s^2 - \frac{\tau_{\pi\pi}}{12\tau} \ge 0$ $1 \ge \frac{\frac{12\delta_{\pi\pi} - \tau_{\pi\pi}}{12\tau_{\pi}} \left(\frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} + c_s^2 - \frac{\tau_{\pi\pi}}{12\tau_{\pi}}\right) (\Lambda_3 + |\Lambda_1|)^2}{\left[\frac{1}{2\tau} (2\eta + \lambda_{\pi\Pi}\Pi) - \frac{\tau_{\pi\pi}}{2\tau} |\Lambda_1|\right]^2}$ $\frac{1}{6\tau_{-}}[2\eta + \lambda_{\pi\Pi}\Pi + (\tau_{\pi\pi} - 6\delta_{\pi\pi})|\Lambda_{1}|] + \frac{\zeta + \delta_{\Pi\Pi}\Pi - \lambda_{\Pi\pi}|\Lambda_{1}|}{\tau_{\Pi}} + (e + P_{s} + \Pi - |\Lambda_{1}|)c_{s}^{2} \ge 0$ $\frac{1}{3\tau_{\pi}} [4\eta + 2\lambda_{\pi\Pi}\Pi + (3\delta_{\pi\pi})\Lambda_{3}] + \frac{\zeta + \delta_{\Pi\Pi}\Pi + \lambda_{\Pi\pi}\Lambda_{3}}{\tau_{\pi}} + |\Lambda_{1}| + \Lambda_{3}c_{s}^{2} + \frac{\frac{12\delta_{\pi\pi} - \tau_{\pi\pi}}{12\tau_{\pi}} \left(\frac{\lambda_{\Pi\pi}}{\tau_{\Pi}} + c_{s}^{2} - \frac{\tau_{\pi\pi}}{12\tau_{\pi}}\right)(\Lambda_{3} + |\Lambda_{1}|)^{2}}{e + P_{s} + \Pi - |\Lambda_{1}| - \frac{1}{2\tau_{\pi}}(2\eta + \lambda_{\pi\Pi}\Pi) - \frac{\tau_{\pi\pi}}{2\tau_{\pi}}\Lambda_{3}} \le (e + P_{s} + \Pi)(1 - c_{s}^{2})$ $\frac{1}{3\tau_{\pi}} [4\eta + 2\lambda_{\pi\Pi}\Pi - (3\delta_{\pi\pi} + \tau_{\pi\pi}|\Lambda_{1}|)] + \frac{\zeta + \delta_{\Pi\Pi}\Pi - \lambda_{\Pi\pi}|\Lambda_{1}|}{\tau_{\Pi}} + (e + P_{s} + \Pi - |\Lambda_{1}|)c_{s}^{2} \ge \frac{(e + P_{s} + \Pi + \Lambda_{2})(e + P_{s} + \Pi + \Lambda_{3})}{3(e + P_{s} + \Pi - |\Lambda_{1}|)} \left\{ 1 + \frac{2\left[\frac{1}{2\tau_{\pi}}(2\eta + \lambda_{\pi\Pi}\Pi) + \frac{\tau_{\pi\pi}}{2\tau_{\pi}}\Lambda_{3}\right]}{e + P_{s} + \Pi - |\Lambda_{1}|} \right\}$ F.S. Bemfica et al., Phys. Rev. Lett. 126, 222301 (2021). 39