Go-Forward workshop 2025

# Rapidity scan in high-energy heavy-ion collisions



**Shin-ei Fujii**<sup>1</sup>, Yasuki Tachibana<sup>2</sup>, Tetsufumi Hirano<sup>1</sup> Sophia University<sup>1</sup>, Akita International University<sup>2</sup>





# Model

# Results

# **Summary and Outlook**

#### High baryon number density at LHC energies

#### Nuclear compression + CGC

Ming Li, Ph.D thesis, U. of Minesota (2018) M. Li and J. I. Kapusta, Phys. Rev. C **99**, 014906 (2019)

Solving classical gluon fields of receding nuclear remnants

 $\Rightarrow$  Rapidity loss  $\Delta y$  of nucleons

• Nuclear compression by  $\Delta y$  $n_{\rm B}(x, y, z) \approx e^{\Delta y} \rho_{\rm A}(x, y, ze^{\Delta y})$  @high energy

M. Gyulassy and L. P. Csernai, Nucl. Phys. A 460, 723 (1986)

 Extremely high baryon number density in the fragmentation regions of high-energy heavy ion collisions

#### Baryon number density of compressed Pb



### **Rapidity Scan**



Expected high baryon number density in forward rapidity in high-energy collisions

M. Li and J. I. Kapusta, Phys. Rev. C 99, 014906 (2019)

Rapidity Scan

Access high baryon chemical potential region in the QCD phase diagram



Complementary study of QCD phase diagram by BES and Rapidity Scan!

#### **QCD** phase diagram and experiments



Baryon chemical potential  $\mu_{\rm B}$ 



# How large baryon chemical potential is achieved as <u>equilibrated</u> matter in forward rapidity?

To answer the question, models must describe...

- Equilibrium and non-equilibrium components separately
- Fluidization (equilibration) of baryon number
- Hydrodynamic evolution of baryon number density





### Introduction



# Results

# **Summary and Outlook**

# **Dynamical Core-Corona Initialization (DCCI) model**

Y. Kanakubo *et al.*, Phys. Rev. C **105**, 024905 (2022)



PHYSICS

## **Dynamical Core-Corona Initialization (DCCI) model**

Y. Kanakubo et al., Phys. Rev. C 105, 024905 (2022)



PHYSICS GROUP

## Hydrodynamic module in DCCI

O Continuity eq. for entire system

$$\partial_{\mu} \left( T_{\rm fluid}^{\mu\nu} + T_{\rm parton}^{\mu\nu} \right) = 0$$

Hydrodynamic eqs. with E-M source term

$$\partial_{\mu} T^{\mu\nu}_{\text{fluid}} = j^{\nu} \qquad j^{\nu} = -\partial_{\mu} T^{\mu\nu}_{\text{parton}}$$





#### **Assumptions**

- Straight trajectory of partons
- Instant equilibration of deposited E-M
- Gaussian profile

SOPHIA HADRON PHYSICS GROUP

#### Phenomenological fluidization rate per particle in core-corona picture

$$\frac{dp_i^{\ \mu}}{d\tau} = -\sum_{j}^{N_{\text{scat}}} \rho_{i,j} \sigma_{i,j} |v_{\text{rel},i,j}| p_i^{\ \mu}$$

 $\rho_{i,j}$ : Effective density of  $j_{th}$  seen from  $i_{th}$   $\sigma_{i,j}$ : Cross section between  $i_{th}$  and  $j_{th}$  $v_{rel,i,j}$ : Relative velocity between  $i_{th}$  and  $j_{th}$ 

Collision detection



#### **O** Cross section

$$\sigma_{i,j} = \min \left\{ \frac{\sigma_0}{s_{i,j}}, \pi b_{\text{cut}}^2 \right\}$$
$$\sigma_0 = 0.3 \text{ fm}^2 \qquad b_{\text{cut}} = 1.0 \text{ fm}$$

Low  $p_{\rm T}$  / Dense region  $\implies$  CORE (QGP) High  $p_{\rm T}$  / Dilute region  $\implies$  CORONA (Partons)

#### **Event by event initial condition for QGP fluid**



# **Extension to finite charges**

#### **Extension to finite charges**



Hydrodynamic eqs. with source terms

$$\partial_{\mu} N^{\mu}_{\mathrm{fluid, I}} = 
ho_{\mathrm{I}}$$
 I: B, Q, S

When  $i_{th}$  parton deposits all energy = dead parton

#### **Source terms of conserved charges**

$$\rho_{\rm I} = -\sum_{j}^{N_{\rm dead}} \frac{dN_{j,\rm I}}{dt} G\left(\mathbf{x} - \mathbf{x}_{j}(t)\right)$$

 $N_{j,I}: \text{ Charge I of } j_{\text{th}} \text{ dead parton}$ G: Gaussian function  $x_j: \text{ Position of } j_{\text{th}} \text{ dead parton}$ 

#### Fluidization (equilibration) and Hydrodynamic evolution of conserved charges (B, Q, S)

### Summary of hydrodynamic equations

$$\partial_{\mu}T^{\mu\nu} = j^{\nu} \qquad T^{\mu\nu} = (e+P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$

$$\partial_{\mu}N^{\mu}_{B} = \rho_{B} \qquad N^{\mu}_{B} = n_{B}u^{\mu}$$

$$\partial_{\mu}N^{\mu}_{Q} = \rho_{Q} \qquad N^{\mu}_{Q} = n_{Q}u^{\mu}$$

$$\partial_{\mu}N^{\mu}_{S} = \rho_{S} \qquad N^{\mu}_{S} = n_{S}u^{\mu}$$

- Ideal hydrodynamics with source terms
- 7 independent variables
- Equation of state with d.o.f  $(e, n_B, n_Q, n_S)$  is needed

<sup>I</sup>fluid<sup>, N</sup>fluid, I

#### **NEOS-4D**



#### • Taylor expansion using Lattice results (high T)

$$\frac{P}{T^4} = \frac{P_0}{T^4} + \sum_{l,m,n} \frac{x_{l,m,n}^{B,Q,S}}{l!\,m!\,n!} \left(\frac{\mu_B}{T}\right)^l \left(\frac{\mu_Q}{T}\right)^m \left(\frac{\mu_S}{T}\right)^n$$

#### • Hadron gas (low T)

$$P = \pm T \sum_{i} \int \frac{g_i d^3 p}{(2\pi)^3} \ln \left[ 1 \pm e^{-(E_i - \mu_i)/T} \right]$$

$$\frac{P}{T^4} = \frac{1}{2} \left[ 1 - \tanh \frac{T - T_c}{\Delta T_c} \right] \frac{P_{\text{had}}}{T^4} + \frac{1}{2} \left[ 1 + \tanh \frac{T - T_c}{\Delta T_c} \right] \frac{P_{\text{lat}}}{T^4}$$

NEOS-4D: No constraint

NEOS-2D: 
$$n_{\rm Q}=0.4n_{\rm B}$$
,  $n_{\rm S}=0$ 

A. Monnai, B. Schenke and C. Shen, Phys. Rev. C 100, 024907 (2019)

(a) T- $\mu_B$  plane  $\int_{0.5}^{1.5} \int_{0.5}^{0.6} \int_{0.5}^{0.6} \int_{0.4}^{0.3} \int_{0.2}^{0.2} \int_{0.1}^{0.2} \int_{0.2}^{0.1} \int_{0.2}^{0.2} \int_{\mu_B}^{1.6} (GeV)$ 







## Introduction

Model



# **Summary and Outlook**

#### **Evolution of core and corona**



Temperature (longitudinal profile)

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



#### Temperature (transverse profile)



: quark
 : diquark
 : gluon
 : anti-quark
 : anti-diquark

 $\tau = 0.1 - 0.3 \text{ fm: } \Delta \tau = 0.01 \text{ fm} \rightarrow \underline{\text{Fluid formation}}$  $\tau > 0.3 \text{ fm: } \Delta \tau = 0.3 \text{ fm} \rightarrow \underline{\text{Fluid evolution}}$ 

#### Temperature

Pb+Pb 2.76 TeV, b = 2.46 fm Single event





#### Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

• Alongside the fluid formation, the core cools down due to the hydrodynamic evolution

### **Evolution of core and corona**



Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



 $\tau > 0.3 \text{ fm: } \Delta \tau = 0.3 \text{ fm} \rightarrow \underline{\text{Fluidization of}}$ baryon number

: quark: diquark: gluon: anti-quark: anti-diquark

Ο

### **Baryon number density**



Baryon number density (longitudinal profile)

• Large <u>equilibrated</u> baryon number density in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$  Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



 Large <u>fluctuations</u> of baryon number density even in midrapidity



### **Electric charge density**



Electric charge density (longitudinal profile)

• Large <u>equilibrated</u> electric charge density in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $n_0 \approx 0.4n_B$  (Pb) Pb+Pb 2.76 TeV*, b* = 2.46 fm Single event

#### Electric charge density (transverse profile)



Large <u>fluctuations</u> of electric charge density even in midrapidity



#### **Strangeness density**

Strangeness density (longitudinal profile)  $n_{\rm S} \, [{\rm fm}^{-3}]$  $\tau = 0.60 \, \text{fm}$ y = 010 0.2 5 0.1 X [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 0 5 10  $\eta_s$ 

 No large strangeness density region in forward rapidity

cf.)  $n_{\rm S}=0$  (Pb)

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Strangeness density (transverse profile)



- Large <u>fluctuations</u> of strangeness density even in midrapidity
  - - Negative  $n_{\rm S}$  region appears

## **Chemical potentials (longitudinal)**

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



 $\mu_{\rm S}$  [GeV]

0.1

0.05

0

-0.05

-0.1

 $e > 0.547 \, \text{GeV}/\text{fm}^3$ 

10



Relatively high  $\mu_{\rm S}$  in forward  $\bigcirc$ rapidities

High  $\mu_{\rm B}$  in forward rapidities

Large negative  $\mu_0$  and  $\bigcirc$ small positive  $\mu_0$ 

### **Chemical potentials (transverse)**

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







- Large fluctuations around zero chemical potential
- Large negative  $\mu_0$  and small positive  $\mu_0$
- Large fluctuations around zero chemical potential

#### **Rapidity dependence of freezeout hypersurface (B)** GROUP $3 \le \eta_s \le 5$ $-1 \leq \eta_s \leq 1$ $7 \le \eta_s \le 9$ 0.2 0.2 0.15 0.15 0.15 T [GeV] T [GeV] T [GeV] Hypersurface: 0.05 0.05 0.05 $e = 0.547 \, \text{GeV}/\text{fm}^3$ Pb+Pb 2.76 TeV, b = 2.46 fm, Single event

-0.6

-0.4

-0.2

0

 $\mu_{\rm B}$  [GeV]

0.2

0.4

0.6

• Some hypersurface element has negative baryon chemical potentials

-0.4

-0.2

0

 $\mu_{\rm B}$  [GeV]

0.2

0.4

0.6

• Significantly large baryon chemical potentials in forward rapidities

-0.6

-0.6

-0.4

-0.2

 $\mu_{\rm B}$  [GeV]

0.2

0.4

0.6

### **Rapidity-averaged freezeout hypersurface (B)**



- Almost zero baryon chemical potential
  - $\approx$  Au+Au 200 GeV
- Averaged-hypersurface in rapidity range  $5 \leq |\eta_s| \leq 7$  exceeds  $\mu_B = 100$  MeV

 $\approx$  Au+Au 27 GeV

- Averaged-hypersurface in rapidity range  $7 \leq |\eta_s| \leq 9$  exceeds  $\mu_B = 300$  MeV
  - $\approx$  Au+Au 7.7 GeV

**Rapidity scan is a strong tool for** exploring the QCD phase diagram!!

### Rapidity dependence of freezeout hypersurface (Q)



• Insufficient available range of NEOS-4D,  $-0.05 < \mu_0 < 0.01$  GeV

Tend to be negative chemical potentials in every rapidity range

PHYSICS

## **Rapidity-averaged freezeout hypersurface (Q)**



- Absolute value of electric charge chemical potentials are small
- Electric charge chemical potentials tend to be negative as go forward rapidity
- Need more statistics to make strict conclusions
- Need wider range EoS

#### **Rapidity dependence of freezeout hypersurface (S)** GROUP $3 \le \eta_s \le 5$ $-1 \leq \eta_s \leq 1$ $7 \le \eta_s \le 9$ 0.2 0.2 0.15 0.15 0.15 T [GeV] T [GeV] 7 [GeV] Hypersurface: 0.05 0.05 0.05 $e = 0.547 \, \text{GeV}/\text{fm}^3$ Pb+Pb 2.76 TeV, b = 2.46 fm, Single event -0.4 -0.6 -0.2 0.2 0.6 -0.2 -0.6 -0.4 -0.2 0.4 -0.6 -0.4 0 0.2 0.4 0.6 0.2 0.4 0.6 $\mu_{\rm S}$ [GeV] $\mu_{\rm S}$ [GeV] $\mu_{\rm S}$ [GeV]

• Insufficient available range of NEOS-4D,  $-0.1 < \mu_{\rm S} < 0.25 \text{ GeV}$ 

• Tend to be positive chemical potentials as go forward rapidity

### **Rapidity-averaged freezeout hypersurface (S)**



- Similar trend with baryon chemical potentials, but absolute values are smaller
- Need more statistics to make strict conclusions
- Need wider range EoS

HYSICS



## Introduction

Model

# Results

# Summary and Outlook

#### **Summary and Outlook**

#### Summary

- Extended the DCCI model to finite baryon number
  - descriptions of thermalized baryon number
  - Rapidity Scan!!
- Negative  $n_{\rm B}(\mu_{\rm B})$  region appears due to the depositions of anti-quarks
- At LHC energies, high baryon chemical potentials are realized in forward rapidities

#### Outlook

- Event averaged analysis, centrality dependence, different initial conditions, etc.
- Rapidity dependent analysis (strangeness enhancement, etc.)
- Study of QCD phase diagram with rapidity scan (as a complementary way to BES)



# Backups

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



0.4

0.35

0.3

0.25

0.2

0.15

0.1



Temperature (longitudinal profile)

Gradual formation of the core (QGP fluid) through the energy-momentum source term  $\bigcirc$ 

Alongside the fluid formation, the core cools down due to the hydrodynamic evolution

Temperature (longitudinal profile)



Pb+Pb 2.76 TeV, b = 6.12 fm Single event

#### Temperature (transverse profile)



SOPHIA

PHYSICS

Temperature (longitudinal profile)



Pb+Pb 2.76 TeV, *b* = 10.1 fm Single event

#### Temperature (transverse profile)



PHYSICS

Baryon number density (longitudinal profile)

 $n_{\rm B} \,[{\rm fm}^{-3}]$ y = 0 $\tau = 0.60 \, \text{fm}$ 0.3 10 0.2 5 0.1 *x* [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 5 10 0  $\eta_s$ 

• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$  Pb+Pb 2.76 TeV, b = 2.46 fm Single event

#### Baryon number density (transverse profile)



 Large fluctuations of baryon number density even in midrapidity



Baryon number density (longitudinal profile)

y = 0 $n_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.3 10 0.2 5 0.1 x [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 5 10 0  $\eta_s$ 

Pb+Pb 2.76 TeV, b = 6.12 fm Single event

#### Baryon number density (transverse profile)



37

PHYSICS

Baryon number density (longitudinal profile)

y = 0

 $n_{\rm B}$  [GeV]

 $\eta_s = 0$ 



Pb+Pb 2.76 TeV, *b* = 10.1 fm Single event

#### Baryon number density (transverse profile)

 $n_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.3 10 0.2 5 0.1 *x* [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 5 10 0 *y* [fm]

PHYSICS

Baryon chemical potential (longitudinal profile)

y = 0 $\mu_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.3 10 0.2 5 0.1 *x* [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 10 0 5  $\eta_s$  $e > 0.547 \, \text{GeV}/\text{fm}^3$  Pb+Pb 2.76 TeV, b = 2.46 fm Single event

#### Baryon chemical potential (transverse profile)



PHYSICS GROUP

Baryon chemical potential (longitudinal profile)

y = 0  $\mu_{\rm B} \,[{\rm GeV}]$ 



Pb+Pb 2.76 TeV, *b* = 6.12 fm Single event

#### Baryon chemical potential (transverse profile)



PHYSICS

Baryon chemical potential (longitudinal profile)

y = 0 $\mu_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.1 10 0.05 5 *x* [fm] 0 0 -5 -0.05 -10 -0.1 -10 -5 0 5 10  $\eta_s$  $e > 0.547 \, \text{GeV}/\text{fm}^3$  Pb+Pb 2.76 TeV, *b* = 10.1 fm Single event

#### Baryon chemical potential (transverse profile)



41

PHYSICS



• Some hypersurface element has negative baryon chemical potentials

• Significantly large baryon chemical potentials in forward rapidities





### **Rapidity-averaged freezeout hypersurface**



• Almost zero baryon chemical potential until  $|\eta_s| \le 5$ 

- pprox Au+Au 200 GeV
- Averaged-hypersurface in rapidity range  $5 \le |\eta_s| \le 7$  exceeds  $\mu_B = 100$  MeV

 $\approx$  Au+Au 27 GeV

• Averaged-hypersurface in rapidity range  $7 \le |\eta_s| \le 9$  exceeds  $\mu_B = 300$  MeV

 $\approx$  Au+Au 7.7 GeV

Rapidity scan is a strong tool for exploring the QCD phase diagram!!

#### **Rapidity-averaged freezeout hypersurface**

#### *b* = 6.12 fm

*b* = 10.1 fm



PHYSICS

### **Rapidity-averaged freezeout hypersurface**



•  $\mu_{\rm B}$  becomes maximum in 7  $\leq |\eta_s| \leq 8$ 

cf.) 
$$y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$$

PHYSICS

#### **NEOS-BQS**



**Taylor expansion using Lattice results (high T)** 

$$\frac{P}{T^4} = \frac{P_0}{T^4} + \sum_{l,m,n} \frac{x_{l,m,n}^{B,Q,S}}{l,m,n} \left(\frac{\mu_B}{T}\right)^l \left(\frac{\mu_Q}{T}\right)^m \left(\frac{\mu_S}{T}\right)^n$$

#### Hadron gas (low T)

$$P = \pm T \sum_{i} \int \frac{g_i d^3 p}{(2\pi)^3} \ln \left[ 1 \pm e^{-(E_i - \mu_i)/T} \right]$$
$$= \sum_{i} \sum_{k} (\mp 1)^{k+1} \frac{1}{k^2} \frac{g_i}{2\pi^2} m_i^2 T^2 e^{k\mu_i/T} K_2 \left(\frac{km_i}{T}\right)$$

$$\frac{P}{T^4} = \frac{1}{2} \left[ 1 - f(T, \mu_J) \right] \frac{P_{\text{had}}(T, \mu_J)}{T^4} + \frac{1}{2} \left[ 1 + f(T, \mu_J) \right] \frac{P_{\text{lat}}(T, \mu_J)}{T^4}$$



Constraints:  $n_Q = 0.4n_B$ ,  $n_S = 0$ 

 $e(T, \mu_{\rm B}) = e(0.165 \text{ GeV}, 0)$ = 0.547 GeV/fm<sup>3</sup>  $rightarrow e_{\rm sw}$  for core

### Hydrodynamic module in DCCI



#### **Energy-momentum conservation**

$$\partial_{\mu} T_{\text{fluid}}^{\mu\nu} = j^{\nu}$$
  

$$T_{\text{fluid}}^{\mu\nu} = eu^{\mu}u^{\nu} - p\Delta^{\mu\nu}$$
 ideal hydro  

$$j^{\nu} = -\sum_{i} \frac{dp_{i}^{\nu}(t)}{dt} G(\mathbf{x} - \mathbf{x}_{i}(t))$$

#### **Baryon number conservation**

$$\partial_{\mu} N_{\rm fluid}^{\mu} = \rho$$

$$N_{\rm fluid}^{\mu} = n_{\rm B} u^{\mu}$$
 ideal hydro

$$\rho = -\sum_{i_{\text{dead}}} \frac{dB_{i_{\text{dead}}}}{dt} G\left(\boldsymbol{x} - \boldsymbol{x}_{i_{\text{dead}}}(t)\right)$$

$$G_{\text{Milne}} = \frac{1}{\sqrt{2\pi\sigma_{\eta}^{2}\tau^{2}}} \exp\left(-\frac{\left(\eta_{s,\text{parton}} - \eta_{s,i}\right)^{2}}{2\sigma_{\eta}^{2}}\right) \times \frac{1}{2\pi\sigma_{xy}^{2}} \exp\left(-\frac{\left(x_{\text{parton}} - x_{i}\right)^{2} + \left(y_{\text{parton}} - y_{i}\right)^{2}}{2\sigma_{xy}^{2}}\right)$$

Default:  $\sigma_\eta = 0.5$  ,  $\sigma_{xy} = 0.6~{
m fm}$ 

#### **RHIC-BES data**





