相対論的電磁流体とその周辺

Department of physics, Hiroshima University International Institute for Sustainability with Knotted Chiral Meta Matter / SKCM². Hiroshima University Kobayashi Maskawa Institute, Nagoya University Department of Physics, Nagoya University

Chiho NONAKA

In collaboration with Nicholas J. Benoit, Kouki Nakamura, Takahiro Miyoshi and Hiroyuki Takahashi

March 1, 2025@Go-Forward 研究会、

長崎

Electromagnetic Fields in Heavy Ion Collisions ?

Strong Electromagnetic field ?

- Au + Au ($\sqrt{s_{NN}}$ = 200 GeV) : 10¹⁴ T ~10 m_{π}^2
- Pb + Pb ($\sqrt{s_{NN}} = 2.76 \text{ TeV}$) : 10¹⁵ T

Charge Dependent Flow @ STAR

Charge dependent directed flow

$v_1 \sim \langle \cos(\phi - \Psi_R) \rangle$ $\Delta v_1 \sim v_1(h^+) - v_1(h^-)$

EM field effect

- Hall effect $\mathbf{F} = q \, \mathbf{v} \times \mathbf{B}$ Positive Δv_1
- Faraday effect $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ Negative Δv_1
- Coulomb effect produced by spectators Negative Δv_1
- + non EM field effect (transported quark effect)
 u and d quarks transported from incoming
 nuclei

Positive Δv_1 for proton

STAR, PRX14,011-28(2024)

Expectation

STAR, PRX14,011-28(2024)

Charge Dependent Flow

STAR, PRX14,011-28(2024)

Charge Dependent Flow

STAR, PRX14,011-28(2024)

Electromagnetic Fields and Property of QGP

Electric Conductivity

- Dissipation of electric field
 - Ampere's law : $\partial_t \vec{E} \nabla \times \vec{B} = -\vec{I}$

Ohm's law makes electric field dissipate

Dissipated energy to fluid (medium)

- Charge is induced by electric field
 - Induced charge depends on charge conductivity
- Dissipation of magnetic field Charge conductivity of QGP
 - dissipation of electromagnetic fields and charge distribution QGP

Electric Conductivity of QCD Matter

• Lattice QCD

NONAKA

Aarts, Nikolaev, EPJ.A 57, 118 (2021); 2008.12326 [hep-lat]

Electric Conductivity on the Lattice $\sigma = \frac{1}{6} \frac{\partial}{\omega} \left(\int d^4 x e^{i\omega t} \langle [j^{\rm em}_{\mu}(t,x), j^{\rm em}_{\mu}(0,0)] \rangle \right) |_{\omega=0}$

Uses linear-response theory (Kubo formula) Low energy limit of the electromagnetic spectral function

- Does not include external magnetic field effects
- Uses approximately realistic pion mass
- General agreement among results using a variety of methods and parameters

Relativistic resistive magnetohydrodynamics

Understanding of QGP Property

Charge conductivity of QGP from analysis of high-energy heavy-ion collisions

Physical property	Observables	Quantitative analysis
Charge conductivity	Charge dependent flow, EM probes	Just started
Shear viscosity	Azumithal anisotoropy v_n	\bigcirc
Bulk viscosity	P_{T} distributions	\bigcirc
Diffusion coefficient	Jet energy loss	0

Charge dependent directed flow

Asymmetic collisions → i.e., Hirono, Hongo, and Hirano, PRC 90, 021903 (2014). Symmetric collisions

Proposed EM observables

Dileptons → i.e., Akamatsu, Hamagaki, Hatsuda, and Hirano, PRC 85, 054903 (2012). Photons → i.e., Sun and Yan, PRC 109, 034917 (2024).

Construction of relativistic resistive magnetohydrodynamics

SKCM² HIROSHIMA UNIVERSITY

Space-Time Evolution of HIC

Initial Conditions

- Smoothed initial conditions
- Fluctuating initial conditions
- Glasma initial condition

Smoothed Initial Condition

Asymptotic solution of Maxwell eq.

Electromagnetic field made by point charge moving in the longitudinal axis

- Proton distribution in nucleus : uniform sphere
- Constant charge conductivity ($\sigma = 0.023 \text{ fm}^{-1}$)

$$\nabla \cdot \boldsymbol{B} = 0, \quad \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t},$$
$$\nabla \cdot \boldsymbol{D} = e\delta(z - vt)\delta(\boldsymbol{b}),$$
$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \sigma \boldsymbol{E} + ev\hat{z}\delta(z - vt)\delta(\boldsymbol{b})$$

Integration of the asymptotic solutions over

the charge distribution inside of nucleus

Tuchin, Phys.Rev.C88,024911(2013)

Electromagnetic Field in Symmetric and Asymmetric Systems

■Au-Au collisions

- ➤ Magnetic field
 - Strong magnetic field
- ≻Electric field
 - No electric field

■Cu-Au collisions

- Magnetic fieldStrong magnetic field
- ≻Electric field
 - $E \neq 0$ due to the asymmetry of the charge distribution

Hirono, Hongo, Hirano

Initial Condition : QGP Medium

Initial Condition : Electromagnetic Fields ($\eta_s = 0$)

■Au+Au

➤Strong magnetic fields in QGP

 $\succ {\rm Electric}~{\rm field} \sim 0~{\rm in}~{\rm QGP}$

■Cu+Au

➤Strong magnetic field in QGP

➢Finite electric field in QGP

Initial Conditions

- Fluctuating initial conditions
 - Smaller B field, Larger E field

y [fm]

2

x [fm]

- Glasma initial condition
 - Benoit-san's talk

75

2

0

2

x [fm]

4

- 50

- 25

Magnetohydrodynamics

Magnetohydrodynamics

Conservation law \bullet

$$\nabla_{\mu}T^{\mu\nu} = 0$$

Energy momentum tensor
$$T^{\mu
u}\,=\,T^{\mu
u}_m+T^{\mu
u}_f$$

$$\nabla_{\mu}F^{\mu\nu} = -J^{\nu}$$

Maxwell eq.

matter

EM field $T_m^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu} \qquad T_f^{\mu\nu} = F^{\mu\lambda}F_{\lambda}^{\nu} - \frac{1}{4}g^{\mu\nu}F^{\lambda\kappa}F_{\lambda\kappa},$

$$\nabla_{\mu}T_{f}^{\mu\nu} = J_{\mu}F^{\mu\nu}$$

Ohm's law Blackman and Field, PRL71,3481(1993) •

 $J^{\mu} = \sigma F^{\mu\nu} u^{\nu} + q u^{\mu}$ $q = -J^{\mu}u_{\mu}$ Electrical conductivity C. NONAKA

Magnetohydrodynamics

• Magnetohydrodynamics

Conservation law

$$\nabla_{\mu}T^{\mu\nu} = 0$$

Energy momentum tensor $T^{\mu\nu} = T^{\mu\nu}_m + T^{\mu\nu}_f$

matter $T_m^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu}$

+viscosity, Hattori..

Maxwell eq.

 $\nabla_{\mu}F^{\mu\nu} = -J^{\nu}$

EM field $T_{f}^{\mu\nu} = F^{\mu\lambda}F_{\lambda}^{\nu} - \frac{1}{4}g^{\mu\nu}F^{\lambda\kappa}F_{\lambda\kappa},$

 $\nabla_{\mu}T_{f}^{\mu\nu} = J_{\mu}F^{\mu\nu}$

 $\nabla_{\mu}T_{m}^{\mu\nu} = -J_{\mu}F^{\mu\nu}$

• Ohm's law Blackman and Field, PRL71,3481(1993)

 $J^{\mu} = \sigma F^{\mu
u} u^{
u} + q u^{\mu}$ Electrical conductivity $q = -J^{\mu}u_{\mu}$

Charge diffusion, Dash et al., PRD 107,056003(2023)

Magnetohydrodynamics

-

NONAKA

RRMHD equation

Benoit, Miyoshi, C. N., and Takahashi, ArXiv: 2502.04611 Nakamura, Miyoshi, C. N. and Takahashi, Phys. Rev. C 107, (2023) 014901 Nakamura, Miyoshi, C. N. and Takahashi, Eur.Phys.J.C 83 (2023) 3, 229. Nakamura, Miyoshi, C. N. and Takahashi, Phys. Rev. C 107 (2023) 3, 034912

RRMHD Equation in Milne Coordinates

- <u>New</u>
 - Milne coordinates
 - Expanding systems in the longitudinal direction (au, x, y, η_s)
 - Strong expansion in the longitudinal direction is effectively included.
 - Number of grid of fluid is saved.

RRMHD Equation

$$\partial_{\tau}(\tau U) + \partial_{i}(\tau F^{i}) = \tau S$$

$$U = \begin{pmatrix} D \\ m_{j} \\ \varepsilon \\ B^{j} \\ F^{j} \\ q \end{pmatrix}, F^{i} = \begin{pmatrix} D v^{i} \\ \Pi^{ji} \\ m^{i} \\ \varepsilon^{jik}E_{k} \\ \varepsilon^{jik}B_{k} \\ J^{i} \end{pmatrix}, S = \begin{pmatrix} 0 \\ \frac{1}{2}T^{ik}\partial_{j}g_{ik} \\ -\frac{1}{2}T^{ik}\partial_{0}g_{ik} \\ 0 \\ J^{i}_{c} \\ 0 \end{pmatrix}$$

Validation of the Code

• RRMHD in the Milne coordinates

Nakamura, Miyoshi, CN and Takahashi, Eur.Phys.J.C 83 (2023) 3, 229.

New Test Problem

- (1+1) dimensional expansion system $u^{\mu} = (\cosh Y, 0, 0, \sinh Y)$
 - Comparison between quasi-analytical solution and RRMHD simulation

Space-time Evolution

Nakamura, Miyoshi, CN and Takahashi, PRC 107, no.1, 014901 (2023)

Au+Au collision system

First calculation in HIC with RRMHD code

Electric field strength

Analysis of Heavy Ion Collisions

Charge Dependent Directed Flow

Benoit, Miyoshi, C. N., and Takahashi, ArXiv: 2502.04611

Charge Dependent Flow

Benoit, Miyoshi, C. N., and Takahashi, ArXiv: 2502.04611

NONAKA

Caveat: No baryon current Initial condition EoS

Final state interactions

Electromagnetic Dissipation for QGP Photon

Electromagnetic fields inside QGP

• EM fields penetrating QGP drive charge carriers out-of-equilibrium

 $J^{\mu} = q u^{\mu} + \sigma F^{\mu\nu} u_{\nu}$ First order dissipation from the EM fields

• Taking the Boltzmann equation in the relaxation time application

 $k^{\mu}\partial_{\mu}f_{a} + eQ_{a}F^{\mu\nu}k_{\mu}\frac{\partial f_{a}}{\partial k^{\nu}} = -\frac{k^{\mu}u_{\mu}}{\tau_{R}}\delta f_{a,EM}^{(n)}$ Sun and Yan, PRC 109, 034917 (2024). Vlasov term for the external EM fields Order "n" corrections

to the quark distribution function

$$\delta f_{a,EM}^{(1)}(X,k) = -\frac{-f_{a,eq}(1-f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}} \underline{e\sigma}Q_{a}\underline{e}^{\mu}k_{\mu}$$

Electric conductivity of QGP from Landau matching with the current EM fields in the fluid rest frame $e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)$ $ightarrow SKCM^2$

Benoit

Electromagnetic Dissipation for QGP Photon

Electromagnetic fields inside QGP

- The fluid + EM field contributions from hydrodynamics
- All of those values can be calculated self-consistently using relativistic resistive magneto-hydrodynamics (RRHMD)

Temperature and four velocity

$$\delta f_{a,EM}^{(1)}(X,k) = -\frac{-f_{a,eq}(1-f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}}e\underline{\sigma}Q_{a}\underline{e}^{\mu}k_{\mu}$$

Electric susceptibility of QGP

$$\chi_{a,el} = -\frac{1}{3} \int \frac{d\vec{p}}{(2\pi)^3 E_p} (p^{\sigma} p^{\nu} \Delta_{\sigma\nu}) \frac{-f_{a,eq}(1 - f_{a,eq})}{p^{\mu} u_{\mu}}$$

and the state of t

Spacetime dependent EM fields in QGP medium

$$e^{\mu} = (\gamma v_k E^k, \gamma E^i + \gamma \epsilon^{ijk} v_j B_k)$$

Benoit

Photon production from QGP and EM fields

Rate of QGP photon production should be increased by the EM fields Benoit

$$E_{k}\frac{d\mathcal{R}}{d^{3}\vec{k}} = E_{k}\frac{d\mathcal{R}}{d^{3}\vec{k}}^{\text{QGP}} + E_{k}\frac{d\mathcal{R}}{d^{3}\vec{k}}^{\text{EM}} \\ E_{k}\frac{d\mathcal{R}}{d^{3}\vec{k}}^{\text{EM}} \sim C\alpha_{s}\alpha_{\text{EM}}\mathcal{IL}_{c}\sum_{a}\delta f_{a,\text{EM}}^{(1)}(X,k) \\ \text{We focus on effect of EM dissipation} \\ \text{We neglect viscous dissipation effect} \end{cases}$$

P_T Spectra of Direct Photon Benoit 10¹ σ=0.0 [fm⁻ σ=0.294 [fm 10⁰ $E_k \frac{d\mathcal{R}}{d^3 \vec{k}}^{\rm EM} \sim C \alpha_s \alpha_{\rm EM} \mathcal{IL}_c \sum_a \delta f_{a,\rm EM}^{(1)}(X,k)$ Au-Au **1**0⁻¹ √s = 200 [GeV] dN/dypTdpT b = 10.0 [fm] $|\eta| < 1.0$ From Lattice QCD 10⁻² $\sigma = 0.029 \, \text{[fm}^{-1}\text{]}$ 10⁻³ 10⁻⁴ Small contribution to P_{T} spectra **10**⁻⁵ 2 3 0 рT

NONAKA

Elliptic Flow of Direct Photon

Benoit

$$v_2(\gamma) \equiv \frac{v_0 v_2 + v_0^{\text{EM}} v_2^{\text{EM}}}{v_0 + v_0^{\text{EM}}}$$

Since largest magnetic field has an elliptic orientation, a larger impact from the EM corrections on elliptic flow appears.

Summary

Initial condition	Magnetohydrodynamics	Final state interactions
Event-by-event fluctuatio	n Baryon current	
Glasma	EoS	
	viscosity	
Causality		

Chiral Magnetohydrodynamics

Charge Dependence of Δv_1 : Au + Au

- $\Delta v_1 = v_1^{\pi^+}(\eta) v_1^{\pi^-}(\eta)$
 - Clear dependence of charge conductivity
 - Proportion to electric conductivity
 - Negative charge induced in the opposite direction of fluid flow suppression of v₁of negative charge
 - $\Delta \nu_1$ with finite σ is consistent with STAR data
 - $\sigma = 0.0058 \, {\rm fm}^{-1}$
 - ex. σ_{LQCD} = 0.023 fm⁻¹ from lattice QCD *Gert Aarts, et al. Phys. Rev. Lett.,* 99:022002, 2007. ✓ QGP electrical conductivity from

high-precision measurement of Δv_1

Charge Dependence of Δv_1 : Cu + Au

Nakamura, Miyoshi, CN and Takahashi, Phys. Rev. C 107 (2023) 3, 034912

- $\Delta v_1 = v_1^{\pi^+}(\eta) v_1^{\pi^-}(\eta)$
 - Electric field created by initial condition
 - Δv_1 is finite at $\eta = 0$
 - Asymmetry structure to $\eta = 0$
 - Proportion to electric conductivity
 - $\Delta \nu_1$ vanishes at $\eta = 0.5$.
 - \checkmark Electrical conductivity <- Δv_1 at $\eta = 0$
 - \checkmark Initial electrical field from η dependence

QGP electrical conductivity.

of Δv_1

