

October 11<sup>th</sup> 2011 – USATLAS Facilities Meeting Shawn McKee, University of Michigan Jason Zurawski, Internet2

### **DYNES Project Updates**

# Agenda

- Project Management Details
- Demos
- LHCONE/NDDI
- Next Steps



### **DYNES Phase 1 Project Schedule**

- Phase 1: Site Selection and Planning (Sep-Dec 2010)
  - Applications Due: December 15, 2010
  - Application Reviews: December 15 2010-January 31 2011
  - Participant Selection Announcement: February 1, 2011
- 35 Were Accepted in 2 categories
  - 8 Regional Networks
  - 27 Site Networks



### **DYNES Phase 2 Project Schedule**

- Phase 2: Initial Development and Deployment (Jan 1-Jun 30, 2011)
  - Initial Site Deployment Complete February 28, 2011
    - Caltech, Vanderbilt, University of Michigan, MAX, USLHCnet
  - Initial Site Systems Testing and Evaluation complete:
    April 29, 2011
  - Longer term testing (Through July)
    - Evaluating move to CentOS 6
    - New functionality in core software:
      - OSCARS 6
      - perfSONAR 3.2.1
      - FDT Updates



### **DYNES Phase 3 Project Schedule**

- Phase 3: Scale Up to Full-scale System Development (14 months) (July 1, 2011-August 31, 2012)
  - Phase 3-Group A Deployment (9 Sites): March 1-Fall, 2011
  - Phase 3-Group B Deployment (13 Sites): July 31-Late Fall, 2011
  - Phase 3-Group C Deployment (11 Sites): July 18 2011- Winter, 2012
  - Full-scale System Development, Testing, and Evaluation (Winter 2012-August 31, 2012)
- Phase 4: Full-Scale Integration At-Scale; Transition to Routine O&M (12 months) (September 1, 2012-August 31, 2013)
  - DYNES will be operated, tested, integrated and optimized at scale, transitioning to routine operations and maintenance as soon as this phase is completed



### Phase 3 – Group A Schedule Details

- Phase 3-Group A Deployment (10 Sites) (March 1-Late Fall 2011)
  - Teleconferences and Planning with individual participants: March 28-May 2, 2011
    - Completed initial telecons with all Group A members
    - Subsequent interaction during installation
  - Finalize Phase 3-Group A Equipment Order List: June, 2011
  - Place Equipment Order: July, 2011
  - Receive DYNES Equipment: Week of July 11th, 2011
  - Configure and Test Individual Participant Configurations: Late July 2011
  - Ship Phase 3-Group A Equipment to sites: Late July 2011
  - Deploy and Test at Phase 3-Group A Sites: Through July 31, 2011
  - Site Level configurations: Through Fall 2011 (delays due to local factors for the most part)

### Phase 3 Group A Members

- AMPATH
- Mid-Atlantic Crossroads (MAX)
  - The Johns Hopkins University (JHU)
- Mid-Atlantic Gigapop in Philadelphia for Internet2 (MAGPI)\*
  - Rutgers (via NJEdge)
  - University of Delaware
- Southern Crossroads (SOX)
  - Vanderbilt University
- CENIC\*
  - California Institute of Technology (Caltech)
- MREN\*
  - University of Michigan (via MERIT and CIC OmniPoP)
- Note: USLHCNet will also be connected to DYNES Instrument via a peering relationship with DYNES

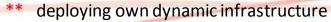


<sup>\*</sup> temp configuration of static VLANs until future group

### Phase 3 – Group B Schedule Details

- Phase 3-Group A Deployment (15 Sites) (July 18 2011-Late Fall 2011)
  - Teleconferences and Planning with individual participants: 3<sup>rd</sup> and 4<sup>th</sup> Week of July 2011
    - Completed initial telecons with all Group B members
    - Subsequent interaction during installation
  - Finalize Phase 3-Group B Equipment Order List: Sept 2011
  - Place Equipment Order: Late Sept 2011
  - Receive DYNES Equipment: Late Sept Early Oct 2011
  - Configure and Test Individual Participant Configurations: Oct 2011
  - Ship Phase 3-Group B Equipment to sites: Expected Late Oct 2011
  - Deploy and Test at Phase 3-Group A Sites: Expected Nov 2011
  - Site Level configurations: Expected through Dec 2011




### Phase 3 Group B Members

- Mid-Atlantic Gigapop in Philadelphia for Internet2 (MAGPI)
  - University of Pennsylvania
- Metropolitan Research and Education Network (MREN)
  - Indiana University (via I-Light and CIC OmniPoP)
  - University of Wisconsin Madison (via BOREAS and CIC OmniPoP)
  - University of Illinois at Urbana-Champaign (via CIC OmniPoP)
  - The University of Chicago (via CIC OmniPoP)
- Lonestar Education And Research Network (LEARN)
  - Southern Methodist University (SMU)
  - Texas Tech University
  - University of Houston
  - Rice University
  - The University of Texas at Dallas
  - The University of Texas at Arlington
- Florida International University (Connected through FLR)



### Phase 3 Group C Members

- Front Range GigaPop (FRGP)
  - University of Colorado Boulder
- Northern Crossroads (NoX)
  - Boston University
  - Harvard University
  - Tufts University
- CENIC\*\*
  - University of California, San Diego
  - University of California, Santa Cruz
- CIC OmniPoP\*\*\*
  - The University of Iowa (via BOREAS)
- Great Plains Network (GPN)\*\*\*
  - The University of Oklahoma (via OneNet)
  - The University of Nebraska-Lincoln
- Supplemental Applications
  - RENCI/Duke/MCNC
  - Texas A&M
  - University of Florida
  - Remaining Regional Networks (e.g. GPN/MOREnet have expressed interest, KANRen too)



\*\*\* static configuration based



### Deployment Next Steps

- Fall 2011
  - Group C Deployment
  - Group A, B, and PI site Testing
- Winter 2011
  - Group A, B, C, and PI site Testing
  - Software upgrades as needed
  - Additional sites come online as funding allows
- 2012 2013
  - Robustness and scalability testing
  - Hardware evaluation determine if refresh is possible/necessary
  - Outreach to other scientific communities
  - Encouraging integration of basic ideas into other software packages (e.g. coordination with other in-progress efforts)

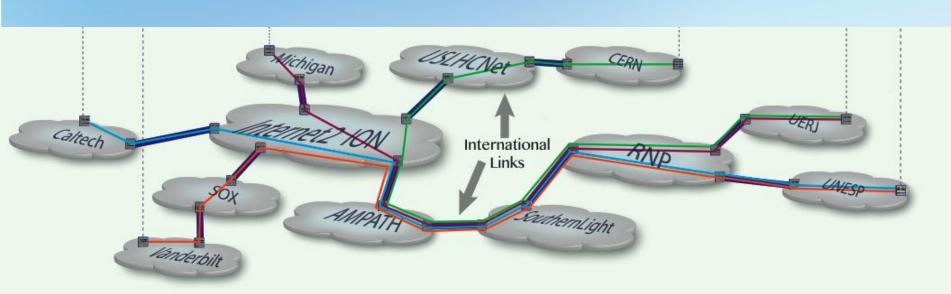
# Agenda

- Project Management Details
- Demos
- LHCONE/NDDI
- Next Steps



#### **Demonstrations**

- DYNES Infrastructure is maturing as we complete deployment groups
- Opportunities to show usefulness of deployment:
  - How it can 'stand alone' for Science and Campus use cases
  - How it can integrate with other funded efforts (e.g. IRNC)
  - How it can peer with other international networks and exchange points
- Examples:
  - GLIF 2011
  - USATLAS Facilities Meeting
  - SC11




#### **GLIF 2011**

- September 2011
- Demonstration of end-to-end Dynamic Circuit capabilities
  - International collaborations spanning 3 continents (South America, North America, and Europe)
  - Use of several software packages
    - OSCARS for inter-domain control of Dynamic Circuits
    - perfSONAR-PS for end-to-end Monitoring
    - FDT to facilitate data transfer over IP or circuit networks
  - Science components collaboration in the LHC VO (ATLAS and CMS)
  - DYNES, IRIS, and DyGIR NSF grants touted



### GLIF 2011 - Topology



**Global Dynamic Layer2 Networking** 



### GLIF 2011 - Participants





































DYNES (NSF Grant # 0958998), DyGIR (NSF Grant # 0962705), IRIS (NSF Grant # 0962704), AmLight (NSF Grant # 0963053)



### **USATLAS** Facilities Meeting

- October 2011
- Similar topology to GLIF demonstration, emphasis placed on use case for ATLAS (LHC Experiment)
- Important Questions:
  - What benefit does this offer to a large Tier2 (e.g. UMich)?
  - What benefit does this offer to smaller Tier3 (e.g. SMU)?
  - What benefit does the DYNES solution in the US give to national and International (e.g. SPRACE/HEPGrid in Brazil) collaborators?
  - Will dynamic networking solutions become a more popular method for transfer activities if the capacity is available?



#### **SC11**

- November 2011
- Components:
  - DYNES Deployments at Group A and Group B sites
  - SC11 Showfloor (Internet2, Caltech, and Vanderbilt Booths all are 10G connected and feature identical hardware)
  - International locations (CERN, SPRACE, HEPGrid, AutoBAHN enabled Tier1s and Tier2s in Europe)
- Purpose:
  - Show dynamic capabilities on enhanced Internet2 Network
  - Demonstrate International peerings to Europe, South America
  - Show integration of underlying network technology into the existing 'process' of LHC science
  - Integrate with emerging solutions such as NDDI, OS<sup>3</sup>E, LHCONE



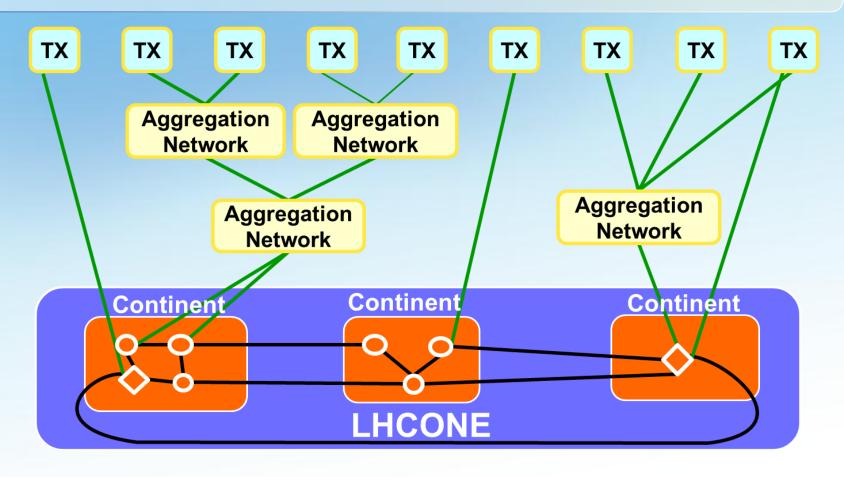
# Agenda

- Project Management Details
- Demos
- LHCONE/NDDI
- Next Steps



### LHCONE and NDDI/OS<sup>3</sup>E

#### LHCONE


- International effort to enhance networking at LHC facilities
- LHCOPN connects CERN (T0) and T1 facilities worldwide
- LHCONE will focus on T2 and T3 connectivity
- Utilizes R&E networking to accomplish this goal

#### NDDI/OS³E

- In addition to Internet2's "traditional" R&E services, develop a next generation service delivery platform for research and science to:
  - Deliver <u>production layer 2 services</u> that enable new research paradigms at larger scale and with more capacity
  - Enable a global scale sliceable network to support network research
  - Start at 2x10 Gbps, Possibly 1x40 Gbps



### LHCONE High-level Architecture



Single node Exchange Point Distributed Exchange Point



# Network Development and Deployment Initiative (NDDI)

Partnership that includes Internet2, Indiana University, & the Clean Slate Program at Stanford as contributing partners. Many global collaborators interested in interconnection and extension



**Builds on** NSF's support for GENI and Internet2's BTOP-funded backbone upgrade



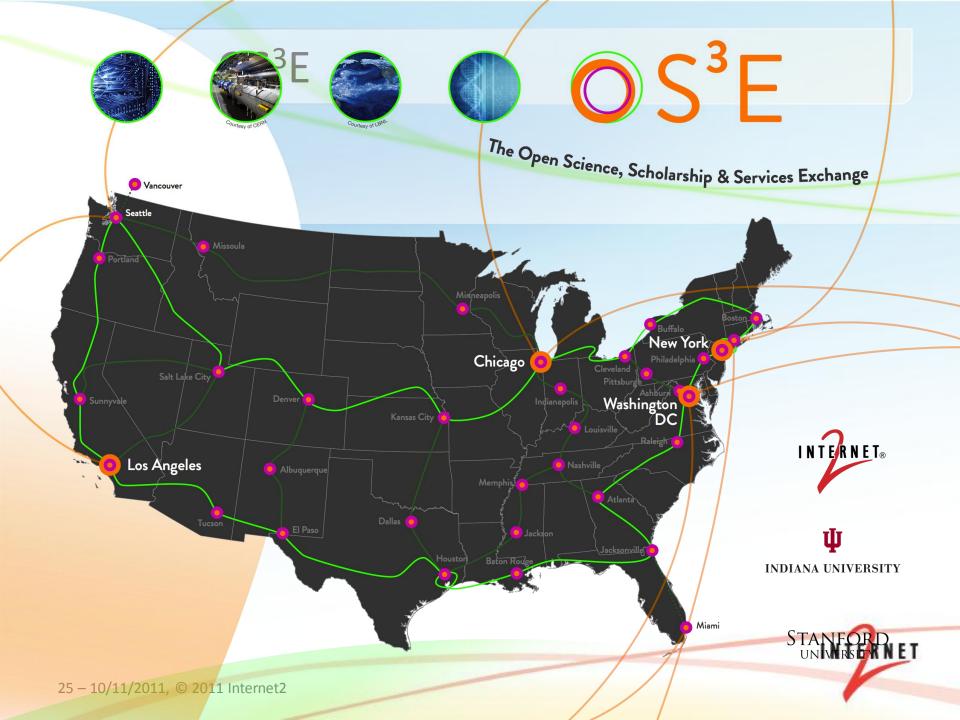
**Seeks to create** a software defined advancedservices-capable network substrate to support network and domain research [note, this is a work in progress]



### Components of the NDDI Substrate

- 30+ high-speed Ethernet switches deployed across the upgraded Internet2 network and interconnected via 10G waves
- A common control plane being developed by IU, Stanford, and Internet2
- Production-level operational support
- Ability to support service layers & research slices

64 x 10G SFP+ 1.28 Tbps non-blocking 4 x 40G QSFP+ 1 RU






### Support for Network Research

- NDDI substrate control plane key to supporting network research
  - At-scale, high performance, researcher-defined network forwarding behavior
  - virtual control plane provides the researcher with the network "LEGOs" to build a custom topology employing a researcher-defined forwarding plane
- NDDI substrate will have the capacity and reach to enable large testbeds





## Deployment





### NDDI / OS<sup>3</sup>E Implementation Status

#### Deployment

- NEC G8264 switch selected for initial deployment
- 4 nodes by Internet2 FMM (e.g. Last Week ☺)
- 5<sup>th</sup> node (Seattle) by SC11 (T 1 Month and counting ...)

#### Software

- NOX OpenFlow controller selected for initial implementation
- Software functional to demo Layer 2 VLAN service (OS³E) over
  OpenFlow substrate (NDDI) by FMM
- Software functional to peer with ION (and other IDCs) by SC11
- Software to peer with SRS OpenFlow demos at SC11
- Open source software package to be made available in 2012



# Agenda

- Project Management Details
- Demos
- LHCONE/NDDI
- Next Steps



### **Next Steps**

- Finish the deployments
  - Still struggling with some of Group B, need to start C
  - Add in others that weren't in the original set
- Harden the "process"
  - Software can use tweaks as we get deployments done
  - Hardware may need refreshing
  - Internet2 ION will be migrating to NDDI/OS<sup>3</sup>E. More capacity, and using OpenFlow
- Outreach
  - Like minded efforts (e.g. DOE ESCPS)
  - International peers, to increases where we can reach
  - Other "Science" (e.g. traditional, as well as computational science – LSST is being targeted)





#### **DYNES Project Updates**

October 11<sup>th</sup> 2011 – USATLAS Facilities Meeting Shawn McKee – University of Michigan Jason Zurawski - Internet2

For more information, visit <a href="http://www.internet2.edu/dynes">http://www.internet2.edu/dynes</a>