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Physics with Particle Detectors on Earth surface:
Detecting and counting Cosmic rays and its energies

Map of Armenia

Areq:

fotal: 29,800 sq km
land: 28,400 sq km
water: 1,400 sq km

Population - 3.000.000
GDP - $9.2 billion
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CRD Research Profile

Cosmic Ray Astrophysics — Research of Cosmic
Ray Sources and Acceleration Mechanisms by
ground based surface detectors.

Solar Physics — Detection on Earth by neutron
monitors and muon telescopes of Solar Energetic
Particles.

Monitoring and Forecasting of the Space Weather.
High energy phenomena in thunderclouds;

Scientific instrumentation: networks of particle
detectors;

Multivariate Data Analysis - Monte Carlo
Statistical Inference.




Abram Alikhanov and Artem Alikhanyan




Aragats, June




Aragats, August
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Most Important Achievements 1942-1992

1942 - First expedition to Aragats

1943 - Establishment of the Physical-mathematical Institute of Yerevan State University;
then Yerevan Physics Institute after Artem Alikanyan, now A.Alikhanyan national lab;

1945-1955 - Foundation of Aragats high-mountain research station. Experiments at Aragats
with Mass-spectrometer of Alikhanyan-Alikhanov: investigations of the composition of
secondary CR (energies <100 GeV); exploration of the “third” component in CR;
observation of particles with masses between p-meson and proton;

1957 —construction of the first lonization calorimeter, detection of particles with energies
up to 10 TeV;

1960 — Foundation of the Nor Amberd high-mountain research station;

1970 — Lenin prize for the Wide-gap Spark Chambers;

1975 —Experiment MUON: energy spectrum and charge ratio of the horizontal muon flux;
1975 — Neutron supermonitors 18NM64 at Aragats and Nor Amberd research stations;

1977 — Experiment PION: measuring pion and proton energy spectra and
phenomenological parameters of CR hadron interactions;

1981-1989 —ANI Experiment: Commence of MAKET-ANI and GAMMA surface detector
arrays for measuring cosmic ray spectra in the “knee” region (1014 — 1016 eV);

1989-1992 —Introduction of multivariate methods for signal detection from y-ray point
sources, prove of the detection of Crab nebula by Whipple collaboration;




Most Important Achievements 1993 - 2008

1993-1996 — Development of new methodology of multivariate, correlation analysis of data
from Extensive Air Shower detectors, event-by-event analysis of shower data from
KASCADE experiment; classification of primary nucleus;

1996-1997 — Renewal of Cosmic ray variation studies at Aragats: installation of the Solar
Neutron Telescope and resumption of Nor Amberd Neutron Monitor;

2000 — Foundation of Aragats Space Environmental Center (ASEC) — for Solar Physics and
Space Weather research; measurements of the various secondary fluxes of cosmic rays;
inclusion of the large surface arrays in monitoring of the changing fluxes of secondary
cosmic rays ;

2003 — Detection of the intensive solar modulation effects in September — November in the
low energy charged particle, neutron and high energy muon fluxes;

2004 — Measurement of the spectra of heavy and light components of GCR, observation of
very sharp “knee” in light nuclei spectra and absence of “knee” in heavy” nuclei spectra,
confirmed in 2007 by spectra published by GAMMA detector;

2005 - Measurements of highest energy protons in Solar Cosmic Rays (GLE 69 at 20
January; detection of Solar protons with E>20GeV);

2007 - Starting of SEVAN (Space Environmental Viewing and Analysis Network - a new type
of world-wide network of particle detectors for monitoring of geophysical parameters

2008 - Multivariate analysis and classification of the solar transient events (Ground level
enhancements, Geomagnetic effects, Forbush decreases) detected by ASEC monitors
during 23" solar activity cycle.
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Aragats Space Environmental Center (ASEC) aims to detect the
Solar Modulation effects: Ground Level Enhancements, Forbush
decreases, Geomagnetic effects; At quit Sun (2007-2011) ASEC
measure hundreds of Thunderstorm ground enhancements (TGEs)
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The 24-th Solar Activity Cycle Produce the First Violent Blast: Now
Ramping up Toward a Solar Maximum in 2013.

Forbush Decrease, February 13-20, 2011 |
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10dulation effects

T " s 3 1 _

Not only Ilghtnmé rain and hail, but also

fluxes of hlgh energy, particles -



Charging a Thundercloud

Raindrops, snow crystals and hail
stones collide inside the cloud.
During these collisions they may
exchange electrons and ions.

The exact mechanism is not well
understood, but the bottom line
IS:
— Largerc‘oarticles become negatively
charged. -
— Smaller particles become positively =
charged. |
Larger particles settle down to
the bottom of the cloud.

Smaller particles are lifted to the
top of the cloud by strong
updrafts.




Type of Discharges

Cloud-to-ground

— 90% of the time: IC- negative cloud to positive ground (electrons
moving from cloud to the ground)

— 10% of the time: IC+ positive cloud to negative ground (electrons
moving upward from ground to the cloud))

Cloud-to-cloud: IC- (negative above positive, electrons moving
downwards)

and IC+ (positive above negative, electrons moving upward)
Cloud-to-atmosphere Elves, red sprites, blue jets

Thermosphere

Red sprite

Mesosphere

Blue jet
Stratosphere

Troposphere ‘- - POtS(; Eg/reoﬁlé)éld-
- strokes




CRT Wilson: discovery of high-energy
phenomena in atmosphere

“In a field of 20 kV/cm the energy supplied to [3-
particle will exceed the average loss; so that particle
will be continuously accelerated until some accident
occurs”

“There is, as well known, some evidence of the
existence of penetrating radiation in the atmosphere;
possibly some portion of it may originate in the
electrical fields of thunderclouds.”

Despite numerous negative results by Bazil Schonland,
Edward Halliday and others in searching of energetic
particles from thunderclouds (as a result of using
inadequate equipment) Wilson supported the idea till
his last publication in 1956.

C. T. R. Wilson, the acceleration of B-particle in strong electrical fields of thunderclouds,
Proc. Cambridge Philos. Soc. 22, 534, (1925).

E.R.Williams, Origin and context of C.R.T. Wilson’s ideas on electron runaway in
thunderclouds, JGR, 115, AOOE50, 2010.



Field and lightning monitoring at Aragats (Boltec
FM100 and LD) — July 2010- July 2011 (~100 TGE)
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Aragast Solar Neutron Telescope(“deep”
calorimeter for 10-120 MeV particles)
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SEVAN basic unit: monitoring 3
species of secondary CR O O

4 scintillators | 100 — traversal of the low energy

with size charged particle (~<200MeV);
50x50x5cm

010 - traversal of the neutral

particle;
5 scintillators 111 & 101 - traversal of the high
with size energy muon (~>250MeV);
50x50x5¢cm

o

www.aragats.am

£ o = 83—

Lead with size
100x100x5cm

COSMIC RAY DI‘UISION
Alikhanyan Physics Insf

Alikhanyan Brothers 2,

Yeravan 375036, Armenia




Section of the Neutron Monitor
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Cube gamma-electron Detector
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TGE of up to 20% magnitude (peaks and deeps) can
be explained by the energy spectra modification

Integral Spectra
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Thunderstorm ground enhancement —
TGE - small effects (transformation of
the energy spectra)

ASEC (Aragats Space Environmental Center; 3200m a.s.l.)
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Modulation of charged flux by
electrical the atmospheric radiation
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Count Rate (CR)

= a) ASNT, [101, E > 15 MeV, S=4 m?
1800001 19 Septomber 2009 Total excess: 462108 events Huge TGE of 19 September, 2009
= Maximal excess: 114810, 169% (4970) .
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a) MAKET, outdoor 5cm detector

Ee > 10 MeV, S=1m?
Total excess: 253119 events
Maximal excess: 64179, 231% (465 )
Mean CR = 27835+138, RE = 0.5%
Duration = 13 min
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b)MAKET,Coincidence of 16 channels
Total excess: 192 events

Maximal excess: 60, 787% (220)

Mean CR =7.55+2.67, RE = 35%
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c) MAKET, Coincidence of 16 channels
mean density before event 6.2+2.5
mean density during the event 3.4+0.5
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Outdoor and indoor stand alone
scintillators detect huge peaks
lasting ~10 minutes

MAKET - a surface array with
16 scintillators (1000 m.sq.)
detect short coherent bursts of
electrons (within 1 psec);
duration less than 50 psec;
Short TGEs have small densities
— can be distinguished from EAS
events

20

18 i u - EAS, total=245, after cut = 124
u - RREA, total=612, after cut = 465
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Friction force in air (keV/cm

Runaway Breakdown (RB, RREA):
when and how
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Huge fluxes of the gamma
are detected by orbiting
telescopes and surface
networks of particle
detectors.

The physical mechanism is
the same - runaway
electron-gamma
avalanches developing in
atmosphere using as seeds
both ambient population
of MeV cosmic ray
electrons and current
pulses of lightning
stepped leaders

RB - Runaway breakdown;
RREA - Relativistic
Runaway electron
avalanche
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Huge TGE on 4 October 2010

ASEC (Aragats Space Environmental Center; 3200m a.s.l.)
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Inverse problem solving: incident Gamma spectra recovery
by the measured energy deposit spectra

Gamm spectrum reconstruction: Oct 4, 2010 event
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October, 2010).



TGE 19.09.09: Electron Integral Energy spectra
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Simulation of the RB from 5000 till 3400 m

| Electrons at 3400m | | Gammas at 3400m |
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| Multiplication dependence on energy |

Maximal energy of electrons on the ground
e —— Iavememeniso sy (ASNT 11) ~30 MeV(on exit from cloud ~50
E— MeV) ; Height of cloud - 130 m;; elongation of
electrical field 1600 m, the needed strength of
field ~1.8 kV/m..
The multiplication rate M ~ 2000, corresponds
to ~7 e-folding lengths of ~200m;Total
number of electrons > 10 MeV - 3.8%¥10712 in
» radii 0.5 km; Maximal energy of gamma rays —
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Count Rate per minute Count Rate per minute

Count Rate per minute

Origin of the peaks in the Neutron Monitor: photonuclear reaction?
Additional negative muons? Not enough gamma rays to explain
neutron monitor counts

F ArNM
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Prove or natural accelerator In
thunderclouds

Largest TGE events allows to estimate energy spectra and avalanche
multiplication rate prove the existence of the Runway breakdown (RB, or
RREA, electron avalanche ) suggested by Wilson and Gurevich.

Majority of TGEs (also small enhancements reported previously by other
groups) are not connected with RB (RREA) process — it is only modification of
the energy spectra of charged secondary cosmic rays in the electrical fields
of the thunderclouds.

Discovery of the “short” TGEs put the TGE and TGF phenomena on the same
scale and point on the alternative source of seed particles (current pulses
along developing lightning step leaders).

Measured for the first time energy spectra of electrons and gamma rays (it is
not possible to estimate energy spectra from TGFs due to scarcity of
gammas) pose several restrictions on the structure and strength of the
electrical field within thunderclouds.

Lightning phenomena: TGE and CG-, IC- lightning occurrences are
interconnected: Avalanche enables only when p-layer is above the
detectors; p-layer prevent CG- lightning occurrence; maybe p-layer is
intensified by CG- lightning during positive field period by the CG- lightning.
Particles and lightning are also competing: at largest TGEs there are very few
IC- lightning.



Thunderstorms & Elementar
Particle Acceleration

Thunderstorms & Elementar
Particle Acceleration
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Miscellaneous




Why Is Lightning Mapping Important?

e Severe storm detection and warning.

* Convective rainfall estimation.

e Storm tracking, hailing forecasting.

e Aviation hazards.

 Warnings: Power companies, fuel depots, golf courses, etc.
* Forest fire forecasting.

* Indicator of cyclone development.

* Understanding of high energy phenomena in atmosphere.
* Understanding of the physics of the Global Electric Circuit.
* Understanding the magnetosphere and the ionosphere.

* NOx generation studies.

* Studies of whistler and other wave propagation phenomena.
* Magnetospheric-ionospheric research.

e Solar-tropospheric studies.



TGE in Yerevan 12 April, 2011 at 800 m asl: on-
line data from all ~ 200 channels of the ASEC
monitors is available from
http://adei.crd.yerphi.am/adei/

SEVAN Yerevan 12.04.2011




Sarah A. Tessendorf, Kyle C. Wiens, and Steven A.
Rutledge Radar and lightning observations of the 3
June 2000 electrically inverted storm from STEPS

Until recently, hypotheses offered to explain positive CG-dominated storms and positive

CG lightning in general (e.g., the tilted dipole or inverted dipole outlined in detail in Williams
2001) do not discuss the role of a lower negative charge layer below the lowest positive charge
region. The charge structure typically associated with negative CG-producing storms is often
referred to as a ‘normal’ tripole, consisting of a main midlevel negative charge region below an
upper-level positive charge layer, with a small lower positive charge layer situated below the3
negative region (Simpson and Scrase 1937, Krehbiel 1986, Williams 1989, Stolzenburg et al.
1998). Several studies (e.g., Jacobson and Krider 1976, Williams et al. 1989) suggest that, in
these normal tripole storms, the lower positive charge region is required to produce negative CG
lightning. The model simulations of storm electrification by Mansell et al. (2002, 2005) also
suggest that lower negative charge regions may be necessary for positive CG flashes, consistent
with the observations of Wiens et al. (2005). Hence, lower negative charge may play a role in
the production of positive CG flashes similar to the role played by lower positive charge in the
production of negative CG flashes.
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P-layer:

One explanation for lower positive charge is that it results from non-inductive collisions
between graupel and ice below the charge reversal level, such that the graupel attains positive
charge at the warmer temperatures and falls to the lowest part of the cloud, while the
negatively charged ice is carried higher and into the main negative region (Williams 1989,
Stolzenburg et al. 1998c).

Though most studies show that non-inductive processes are primarily responsible

for this tripole charge structure, it has also been suggested that inductive charging
processes do play a secondary role in thunderstorm charging and could contribute to

the lower positive charge layer, and that screening layer processes create additional
charge layers along the cloud edge (Ziegler et al. 1991, Brooks and Saunders 1994,
Stolzenburg et al. 1998c, Mansell et al. 2005).

This hypothesis suggests that the presence of the lower positive charge locally enhances the
electric field below the main negative charge region, and thus provides a bias for the negative
charge transfer to go to ground, whereas it is less energetically favorable to transfer negative
charge to ground otherwise (Williams et al. 1989). The behavior of modeled lightning discharges
(Williams et al. 1985, Solomon and Baker 1998, Mansell et al. 2002) also supports this idea.

With the advent of cloud-to-ground lightning detection networks, mobile electric field balloon
facilities, and three dimensional lightning mapping systems, more information on lightning
properties of thunderstorms has been collected, occasionally within supercell storms.



Aragats TGE of 2010
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2-way classification of the MAKET triggers —
discovery of the short TGE events (particle bursts of
duration less than 50 psec)
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Much more lightning occurs over land than ocean
because daily sunshine heats up the land surface
faster than the ocean.

The area on earth with the highest lightning activity is located over the
Democratic Republic of the Congo in Central Africa. This area has
thunderstorms all year round as a result of moisture-laden air masses from
the Atlantic Ocean encountering mountains.



Role of lower positive charge region (LPCR)
in facilitating different types of lightning
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Vertical components of electric field vectors, E_n and E_Ip, due to the main negative and lower positive cloud charge
regions, respectively. Between the negative and positive charge regions, E_n and E_lp are in the same direction and
hence electric field is enhanced due to the presence of the LPCR. On the other hand, in the region below the LPCR
E_nand E_Ip are in opposite directions and hence the field is reduced. After originating at the lower boundary of
main negative charge region the step leader would be initially accelerated and then (after traversing the LPCR)

decelerated due to the presence of the LPCR.

Amitabh Nagand Vladimir A. Rakov,
GRL, VOL. 36, L05815, d0i:10.1029/2008GL036783, 2009
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Negative Field IC- lightning
occurrences; CG- - suppresed
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Charge layered structure
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In addition to the positive region at the top of a thundercloud and the main negative N-region
near the bottom, a smaller positive region called the p-region has been observed at the bottom
of the cloud. This positive region is thought to be important in the triggering of the most
common cloud-to-ground discharges. Uman :"The usual cloud-to- ground discharge probably
begins as a local discharge between the small pocket of positive charge at the base of the cloud
and the primary region of negative charge (the N region) above it. This local discharge frees
electrons in the N-region that previously had been attached to water or ice particles. These
electrons overrun the p-region, neutralize its small positive charge, and then continue on their
trip to the ground. " This description is based upon the tripolar model of charge buildup.



http://hyperphysics.phy-astr.gsu.edu/hbase/electric/ligseq.html
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/lightning.html
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/lightning.html
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/lightning.html

More lightning occurrence — less particles

ASEC (Aragats Space Environmental Center; 3200m a.s.l.)
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Relation of the electron-gamma avalanche
and lightning

Observation: Maximum observed thundercloud
electric fields are 1/10% the dielectric strength of air

Initial High Energy Cosmic Ray
of nucleonic origin
(£ = 10%eV)

Particles created during
cosmic ray shower
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Relativistic Runaway Electron avalanche (RREA)
generate numerous low energy electrons and
gamma rays (conductive channel) followed by
positive streamer systems; This provide the
required field intensification allowing positive
streamer system start step leader process.

Particles, fields and strokes are interconnected!
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Short TGE, evidence for the step leader seeds
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Short TGEs occur during large negative electrical field
accompanied by negative intracloud lightning (IC-). The
generation mechanisms of the TGFs and short TGEs are
close to each other and symmetric: RREA using as seeds
the electrons from the current pulses along the step
leaders (+/- IC) and developing in consequent negative and
positive electrical fields. Short TGEs are very rare events
(detected at Aragats about once a year); the MAKET array
observes the sky just above the detector ( ~10° m?2).

Fermi and AGILE are observing huge areas reaching ~1012
m?, therefore, the number of detected TGFs is much larger
reaching hundreds per year.

TGE develops in rather dense atmosphere; only close
location of the thundercloud to ground and rather large
elongation of the strong electrical field can provide unique
possibilities of detection TGE electrons and gamma rays.
The duration of the TGE is more than an order of
magnitude shorter than the ones of TGF. Gamma-rays
arriving at satellite altitude are covering at least 3 order of
magnitude longer path length comparing with TGEs and
arrive spread over a pulse of ¥~500 ps. TGEs come from
thunderclouds just above our heads and cover less than
500 m, therefore, they come in pulses with duration less

than 50 ps.

Chilingarian, A., G. Hovsepyan and A. Hovhannisyan, Particle
bursts from thunderclouds: Natural particle accelerators above our
heads Phys. rev. D, 83, 062001, (2011).



100 MeV Electron
accelerator in the
thundercloud




2011 plans

Calibrate energy spectra by 3 independent networks of
particle detectors: Nal, outdoor Cube and indoor ASNT;

Measure electron energy spectrum by 3 cm 4 layered STAND
up to 30 MeV;

Multivariate inference: analyze electron and gamma ray
fluxes simultaneously with lightning occurrence,
magnetometer, weather and electrometers data;

Get more information about thundercloud formation at
Aragats;

Understand field reversal: small p-layers comes above due to
moving cloud or due to CG- lightning?

Start measurements of the PMT height spectra on the psec
scale (150 MHz flash ADCS);

Perform precise lightning mapping with network of Boltec
detectors;



