TPC pad simulation for wide dynamic range application

RD51 meeting at Kobe 2011 Sep 2nd

Thesis: Fine pitch FPC(30μ/30μ L/S) for PHENIX Si Pixel detector

Tokyo Metropolitan Industrial Technology Research Institute

Electronics Group

Kohei Fujiwara,

Takeshi Kobayashi fujiwara.kohei@iri-tokyo.jp

Atsushi Taketani, Takaaki Isobe, RIKEN

Outline

- 1. Development motivation from Nuclear Physics
- 2. Development steps of a TPC pad
- 3. Crosstalk measurement
- 4. Impedance measurement
- 5. New TPC pad development
- 6. Summary

2. Development motivation

- Heavy Ion 400MeV/A, measuring interaction products by TPC.
- Pulse height induced in a detector $\propto Z^2$
- Target range of Z is Z~10.
- MIP should be detected near by Z=10

- Dynamic range > 100
- In order to obtain the detection dynamic range, the crosstalk level should be less than 0.5%.

3. Development steps of a TPC pad We are developing a new TPC pad with RIKEN.

- 1. Electromagnetic simulation
 - Design lower crosstalk transmission line and pattern.
 - Layer structure, physical parameters
 - Current distribution, S-parameter calculation
- 2. Circuit Simulation for crosstalk
 - Calculate crosstalk level in an adjacent line
 - -> Required crosstalk level is less than 0.5%.
- 3. Making Test board for crosstalk evaluation
- 4. Design TPC pad

Development Software for the simulation

Agilent Technology: Advanced Design System (ADS)

Development of:

- RF circuit, High Speed RF circuit
- Monorisic Microwave IC (MMIC), RFIC
- Transmission Line, Antenna

Example of MMIC design

Electromagnetic simulation models

First, development of low crosstalk transmission line in TPC pad

3 types of transmission line

- Line width (w): 0.1 mm
- Space (s): 0.1 mm
- Line length: 36 mm
- Thickness (h): 43 μm
- Substrate: FR-4 (er=4.2, tanδ=0.015)
- Conductivity: 5.8 x10⁸ S/m

Simulation Models

Result of electromagnetic simulation

Calculating the S-parameters from 10 MHz to 2.5 GHz.

Calculation model for crosstalk evaluation

SMA connector model is included to make a realistic model.

Without connector model is also prepared.

Crosstalk level in each models

« Crosstalk level of Model3 is also the best in the measurement.

Test boards

- To evaluate transmission line in Model2 and Model3.
- Measured cross talk level, impedance are compared with simulation result.

4. Crosstalk level measurement

- Crosstalk measurement setup
 - 3 GHz analog bandwidth oscilloscope
 - Pulse Generator (Pulse height=4 V)

Crosstalk level measurement result

Crosstalk level in Model3 is improved than the simulation.

→ It might be reason of SMA connector frequency characteristics.

5. Impedance measurement

- Time Domain Reflectometry (TDR)
- Agilent 86100C
 - TDR Module 54754A x 2
- Minimum pulse rise time:10 ps
- To evaluate characteristic impedance in time domain.
 - Transmission lines
 - Finding failure point
 - Lines
 - Wire-bonding...

Impedance measurement setup

Impedance measurement result 1

Test board of Model3 has better impedance characteristics.

- $Z \sim 55 \Omega$
- Line length by TDR measurement: ~ 36 mm
 - It is consistent with the real length.

Impedance measurement result 2

It seems Model3 has better impedance characteristics.

- Line impedance of transmission region in Model3 is flat than Model2.
- Good result by separator (GND line) in Model3
 - → Electric force line can be shielded.

6. New TPC pad

5 Layers structure

1 Pad area: 11 mm x 7 mm

Cross Section

Simulation with Pad

-98.6% than Model3.

7. Summary

- We are developing lower crosstalk TPC pad including transmission line.
 - Crosstalk level by simulation: 0.08%
 - Crosstalk level by measurement: 0.04%
 - Requirement: <0.5%, it is satisfied.
- Line impedance stability is confirmed by TDR.
 - Model3 has has good stability.
- Starting new TPC pad simulation and design.
 - 1 Pad area: 11 mm x 7 mm.
 - 5 Layers structure
- Do simulation including TPC capacitance (~10 pF) including transmission line. Seems fine.

Future Plan

Building with MICROMEGAS

Look at cross talk at readout electronics

Need wide dynamic preamp and ADC