Very high energy γ and ν

Implications for UHECR

CERN, 15/2/2012 UHECR 2012

Neutral messengers of UHECR

- Photons and neutrinos
 - Photons: plentiful but complicated
 - Interactions in sources & in transit modify spectrum
 - Can be electromagnetic in origin or hadronic
 - Neutrinos: clean but rare
 - Hadronic origin
 - No interactions in sources
 - (few in detector)

Two ways of producing γ & ν

1. At the sources of UHECR

- Depends on details of accelerated spectrum
- Depends on cosmic evolution of sources
- Depends on conditions in/near the sources
- 2. During propagation
 - Depends on injected spectrum
 - As function of red shift and energy
 - But not on conditions at the sources

UHECR

- Energy content of UHECR determines possible sources
- Assume extra-galactic origin
- Location of transition from galactic to extragalactic affects energy estimate
- Illustration:

CERN, 15/2/2012

UHECR 2012

$$E\frac{dN}{d\ln E} \approx 30 \ eV \ cm^{-2}sr^{-1}s^{-1}$$

Energies and rates of the cosmic-ray particles ****** CAPRICE + BESS98 → 10^{0} AMS protons only Ryan et al. Grigorov – JACEE -Akeno all-particle Tien Shan MSU ⊢ **1**0⁻² (GeV cm⁻²sr⁻¹s⁻¹) KASCADE CASA-BLANCA DICE HEGRA ⊢-□ CasaMia 🛏 🔸 Tibet 🛏 10⁻⁴ AGASA ⊢ HiRes1&2 ⊢–● Auger2009 ⊢-Galactic E²dN/dE **1**0⁻⁶ antiprotons 10⁻⁸ Extr Fixed target HERA **TEVAT**RON RHIC LHC 10⁻¹⁰ 10^{2} 10^{10} 10¹² 10^{4} 10^{8} 10^{0} 10^{6} Ekin (GeV / particle) **Tom Gaisser** 4

Power needed for extragalactic cosmic rays (assuming transition at the ankle)

• Energy in extra-galactic cosmic rays per *ln*(E):

$$\frac{4\pi}{c}\frac{EdN}{d\ln E}\approx 2\times 10^{-20}~erg~cm^{-3}$$

- Divide by Hubble time to estimate power required: $\frac{dL}{d\ln E} \approx 2 \times 10^{36} \ erg \ Mpc^{-3}s^{-1}$
- Power required $\geq 10^{37} \text{ erg}/\text{Mpc}^3/\text{s}$
 - Estimates depend on cosmology + extragalactic magnetic fields:
 - 3×10^{-3} galaxies/Mpc³ 5×10^{39} erg/s/Galaxy

 - 10⁻⁷ AGN/Mpc³
 - ~1000 GRB/yr
 - 3 x 10⁻⁶ clusters/Mpc³ 4 x 10⁴² erg/s/Galaxy Cluster
 - $10^{44} \, \mathrm{erg/s/AGN}$
 - $3 \times 10^{52} \text{ erg}/\text{GRB}$

CERN, 15/2/2012 **UHFCR 2012**

E_{max}: the "Hillas Plot" (1984)

- $E_{max} \sim \beta_{shock}$ (ZeB) R
- Plot shows B, R to reach 10²⁰ eV
- Since 1984, two more candidates
 - GRB and magnetars
- AGN and GRB favored

CERN, 15/2/2012 UHECR 2012

External galaxies observed in TeV γ

Galactic coordinates;

red dots=active galaxies; orange=starburst.galaxies (M82, NGC253)

CERN, 15/2/2012 UHECR 2012 Tom Gaisser

7

Active galaxies with > 0.1 TeV γ

UHECR 2012

Search for point sources in IceCube

Total events: 43339 (upgoing) + 64230 (downgoing)
Livetime: 348 days (IC59) + 375 days (IC40)

Note high energy threshold for downward events

CERN, 15/2/2012 UHECR 2012

IceCube selected sources

(13 galactic SNR etc, 30 extragalactic active galaxies, etc.)

Source	RA (deg)	Dec (deg)	Туре	Distance	P-value
Cyg OB2	308.08	41.51	UNID	-	
MGRO J2019+37	305.22	36.83	PWN	-	
MGRO J1908+06	286.98	6.27	SNR	-	0.38
Cas A	350.85	58.81	SNR	3.4 kpc	
IC443	94.18	22.53	SNR	1.5 kpc	-
Geminga	98.48	17.77	Pulsar	100 pc	
Crab Nebula	83.63	22.01	SNR	2 kpc	
IES 1959+650	300.00	65.15	HBL	z = 0.048	
IES 2344+514	356.77	51.70	HBL	z = 0.044	
3C66A	35.67	43.04	Blazar	z = 0.44	0.42
H 1426+428	217.14	42.67	HBL	z = 0.129	
BL Lac	330.68	42.28	HBL	z = 0.069	0.4
Mrk 501	253.47	39.76	HBL	z = 0.034	0.19
Mrk 421	166.11	38.21	HBL	z = 0.03 I	
W Comae	185.38	28.23	HBL	z = 0.1020	
IES 0229+200	38.20	20.29	HBL	z = 0.139	0.39
M87	187.71	12.39	BL Lac	z = 0.0042	0.38
S5 0716+71	110.47	71.34	LBL	z > 0.3	0.49
M82	148.97	69.68	Starbust	3.86 Mpc	
3C 123.0	69.27	29.67	FRII	1038 Mpc	-
3C 454.3	343.49	16.15	FSRQ	z = 0.859	0.48
4C 38.41	248.81	38.13	FSRQ	z = 1.814	0.3

PKS 0235+164	39.66	16.62	LBL	z = 0.94	0.18
PKS 0528+134	82.73	13.53	FSRQ	z = 2.060	0.49
PKS 1502+106	226.10	10.49	FSRQ	z = 0.56/1.839	
3C 273	187.28	2.05	FSRQ	z = 0.158	
NGC 1275	49.95	41.51	Seyfert Galaxy	z = 0.017559	
CygA	299.87	40.73	Radio-loud Galaxy	z = 0.056146	0.44
Sgr A*	266.42	-29.01	Galactic Center	8.5 kpc	0.49
PKS 0537-441	84.71	-44.09	LBL	z = 0.896	0.44
Cen A	201.37	-43.02	FRI	3.8 Мрс	0.14
PKS 1454-354	224.36	-35.65	FSRQ	z = 1.42	0.14
PKS 2155-304	329.72	-30.23	HBL	z = 0.116	
PKS 1622-297	246.53	-29.86	FSRQ	z = 0.815	0.27
QSO 1730-130	263.26	-13.08	FSRQ	z = 0.902	
PKS 1406-076	212.24	-7.87	FSRQ	z = 1.494	0.36
QSO 2022-077	306.42	-7.64	FSRQ	z = 1.39	
3C279	194.05	-5.79	FSRQ	z = 0.536	0.45
TYCHO	6.36	64.18	SNR	2.4 крс	
Cyg X-I	299.59	35.20	MQSO	2.5 kpc	
Cyg X-3	308.11	40.96	MQSO	9 kpc	
LSI 303	40.13	61.23	MQSO	2 kpc	
SS433	287.96	4.98	MQSO	1.5 kpc	0.48

CERN, 15/2/2012 UHECR 2012

Searches for selected sources

Compare IC-40 limits

Model Dependent IC-40 / IC-59 result

CERN, 15/2/2012 UHECR 2012

Search for diffuse flux of v

- Neutrinos are not absorbed. Therefore *All sources out to Hubble radius contribute*
- Hard spectrum
 - Expect -2.0 to -2.4 differential spectral index
 - Compared to -3.0 to -3.7 for atmospheric ν
- Look for excess of high-energy events above background of atmospheric neutrinos

Measurement of v_{μ} -induced μ

- Fit 3 components:
 - Atmospheric ν from K[±] and π^{\pm} (0.3 85 TeV)
 - Use Honda 2007 to 10 TeV
 - + power-law extrapolation
 - ~ $\cos^{-1}(\theta)$
 - Prompt ν (10 600 TeV)
 - Harder spectrum to > 10⁷ GeV (~E^{-2.7}), isotropic
 - Astrophysical v
 - Isotropic, with E⁻² spectrum assumed (35 7000 TeV)
 - Note different response for astro. v vs atmos. v

Result of fit:

- Consistent with only K, π atmospheric v to 100 TeV
- Charm component not yet seen "intrinsic" charm in doubt?
- No astrophysical neutrinos seen yet

CERN, 15/2/2012 UHECR 2012

IceCube v_{μ} : measurements & limits

Where are the neutrinos?

What do the limits mean?

CERN, 15/2/2012 UHECR 2012

Generic model I

- CR acceleration occurs in jets – AGN or GRB
- Abundant target material
 - Most models assume photo-production:
 - $p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0 \rightarrow p + \gamma \gamma$
 - $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \rightarrow n + \mu + \nu$

- Ideal case (~ "Waxman-Bahcall limit")^{Waxman, Bahcall, PRD 59}, TKG astro-ph/9707283v1
 - Strong magnetic fields retain protons in jets
 - Neutrons escape, decay to protons & become UHECR
 - Extra-galactic cosmic rays observed as protons
 - Energy content in neutrinos ≈ energy in UHECR
- This picture disfavored as limits go below W-B CERN, 15/2/2012 UHECR 2012 Tom Gaisser

Generic model II

- UHECR are accelerated in external shocks analogous to SNR
 - See E.G. Berezhko, 0809.0734 & 0905.4785
 - mixed composition (accelerate whatever is there)
 - Low density of target material
 - → lower level of TeV-PeV neutrino production

Cosmogenic (GZK) neutrinos

- Cosmic ray connection II
- UHECR exist, therefore
 - Neutrino production occurs during propagation via
 - $p + \gamma_{CMB} \rightarrow \pi^+ \rightarrow \nu$
 - $E_{th} \sim 5 \ge 10^{19} \text{ eV}$
 - Even if no v from CR sources
- Intensity depends on
 - Spectrum at sources
 - Evolution of sources
 - Composition of UHECR (Heavy nuclei give less v)

CERN, 15/2/2012 UHECR 2012

Radio Detection of neutrinos

ANITA-II over Antarctica

FIG. 3: Events remaining after unblinding. The Vpol neutrino channel contains two surviving events. Three candidate UHECR events remain in the Hpol channel. Ice depths are from BEDMAP [12].

http://arxiv.org/abs/1003.2961

Vpol:1 neutrino candidate; HPol: $3 > 10^{19}$ eV cosmics

CERN, 15/2/2012 **UHECR 2012**

ANITA also detects ~10¹⁹ eV CR

ANITA-III optimized for UHECR as well as v will fly over Antarctica in 2013-14

CERN, 15/2/2012 UHECR 2012

Auger as a neutrino detector

Tom Gaisser

Late developing, horizontal air showers and Earth skimming $v_{\tau} \rightarrow \tau \rightarrow$ shower are signals for cosmogenic neutrinos in large air shower detectors Expect 0.71 events in 3.5 yrs (ICRC 2011)

CERN, 15/2/2012 UHECR 2012

IceCube limits on cosmogenic v

- GZK search looks for
 - very bright events
 - near the horizon
 - with compact initial burst of light
 - Complementary to diffuse v_{μ} search that starts by measuring atmospheric v_{μ}
 - Blue lines show results that include cascades
 - Model 6 (Fermi max): expect 0.4 events

IceCube-40 arXiv:1103.4250

CERN, 15/2/2012 UHECR 2012

Cosmogenic photons

Two model calculations from Gelmini, Kalashev, Semikoz arXiv:1107.1672

What if E_{max} /nucleon < 100 EeV?

"Disappointing model"

Aloisio, Berezinsky, Gazizov Astropart. Phys. 34 (2011) 620.

Plot by Todor Stanev (T. Gaisser & T. Stanev, arXiv:1202.0310)

CERN, 15/2/2012 UHECR 2012

Summary

- Current neutrino limits begin to disfavor UHECR origin inside relativistic jets
 - Discovery or improved limits coming
 - IC59 + IC79 data currently in analysis
 - Full IceCube-86 operating since May 2011
- Is the cutoff the GZK effect?
 - Need to measure cosmogenic neutrinos
 - Or decrease current limit by factor of ten
 - ARA, ARIANNA, Auger next