UHECR2012@ 14Feb2012

Review of accelerator data of relevance to air shower simulations

Yoshitaka Itow STE Lab / Kobayashi-Maskawa Inst. Nagoya University

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe "UHECR 2012" Feb 13-16, 2012, CERN

UHECR2012@ 14Feb 2012

Hadron interactions at ultra high energy Accelerator ↔ Cosmic rays

Charged particle detectors

 $E_{CM} \sim (2 \times E_{lab} \times M_{p})^{1/2}$

s=14TeV collision at LHC →10¹⁷eV cosmic rays Muon detectors

UHECR2012@ 14Feb 2012

Cosmic ray spectrum & historical colliders

>40 yrs legacy of wisdom for interactions available !

Outline of this talk

- What type of interactions we concern ?
- Sort out the data regarding as relevance to air showers phenomena, especially focusing on Xmax
 - Inelastic cross section
 - Forward energy spectra
 - Inelasticity
 - Iow energy data
- Nuclear effect is important, but ...
 - This talk focuses just on p-p
 - Comments on possible p-A runs at LHC before long shutdown

UHECR2012@ 14Feb 2012

A LHC detector and pseudorapidity

UHECR2012@ 14Feb 2012

pseudorapidity and interactions

Y.Itow, Review of Accelerator data Very forward : Majority of energy flow (s=14TeV)

Most of the energy flows into very forward (Particles of $X_F > 0.1$ contribute 50% of shower particles)

UHECR2012@ 14Feb 2012

Energy flow for s=14 and 7TeV

UHECR2012@ 14Feb 2012

Inelastic cross section

TOTEM ATLAS CMS ALICE

UHECR2012@ 14Feb 2012

ATLAS σ_{inela} measurement

Nature Commun. 2 (2011) 463

$$\sigma_{inel}(\xi > 5 \times 10^{-6}) = \frac{N_{obs} - N_{BG}}{\varepsilon_{trig} \times \int Ldt} \times \frac{1 - f_{\xi < 5 \times 10^{-6}}}{\varepsilon_{sel}}$$

• Use MB events with 20.3 +- 0.7 μ b⁻¹ • Cut diffractive events ($\xi < 5E$ -6) $\sigma_{inel}(\xi > 5 \times 10^{-6}) =$ 60.33±2.10(exp.)*mb*

extrapolate entire ξ

 $\sigma_{inel}(\xi > m^2_p / s) =$

 $69.1 \pm 2.4(\exp.) \pm 6.9(extr)mb$

UHECR2012@ 14Feb 2012

TOTEM "Roman Pod" measurement

UHECR2012@ 14Feb 2012

Y.Itow, Review of Accelerator data

UHECR2012@ 14Feb 2012

UHECR2012@ 14Feb 2012

ALICE $\sigma_{diffraction}$

J. Phys. G: Nucl. Part. Phys. 38 (2011) 124044

Forward energy spectra / Inelastiscity / P_T

LHCf
UA7
CMS FCAL
RHIC BRAHMS
Forward neutron spectra

Y.Itow, Review of Accelerator data UHECR2012@ 14Feb 2012 LHCf: location and detector layout

UHECR2012@ 14Feb 2012

Rapidity vs Forward energy spectra

UHECR2012@ 14Feb 2012

LHCf single γ spectra at 7TeV Phys.Lett. B703 (2011) 128-134 DPMJET 3.04 QGSJETII-03 SIBYLL 2.1 EPOS 1.99 PYTHIA 8.145

Gray hatch : Systematic Errors

Blue hatch: Statistics errors of MC

UHECR2012@ 14Feb 2012

New LHCf single γ spectra at 900 GeV (to be submitted PLB)

UHECR2012@ 14Feb 2012

LHCf 900GeV single γ spectra: Data/MC

UHECR2012@ 14Feb 2012

Y.Itow, Review of Accelerator data

LHCf 900GeV single γ spectra: Data/MC

UHECR2012@ 14Feb 2012

UHECR2012@ 14Feb 2012

New LHCf $\pi^0 P_T$ at 7TeV (Preliminary)

UHECR2012@ 14Feb 2012

CMS HF : forward energy flow

UHECR2012@ 14Feb 2012

CMS HF: Forward energy flow

CERN-PH-EP/2011-086, arXiv/0329842

29

UHECR2012@ 14Feb 2012

RHIC BRAHMS : charged spectra at s=200GeV

Inelasticity~ 0 degree neutron spectra

Important for X_{max} and also N_μ
 Measurement of inelasticity at LHC energy

UHECR2012@ 14Feb 2012

Future data for forward energy flow

Forward neutrons by LHC ZDC's So far working well for centrality in HI runs Potentially they can work nicely (PID ?) Combined LHCf+ATLAS ZDC may benefit Other LHC forward detectors \square CMS CASTOR : Only coverage for $\eta \sim 6$ TOTEM T1, T2, LHCb VELO($1.6 < \eta < 4.9$?) New LHC detectors ? CMS Forward Shower Calorimeter (FSC)? Roman Pod type calorimeter (a la UA7)? RHIC Odgree measurement ? s = 500 GeV with larger P_T acceptance \square Possible π^0 measurement

UHECR2012@ 14Feb 2012

Summary : forward spectra coverage

Exp

 $dN_{\mu}/d(\ln E)$

250

200

150

100

50

UHECR2012@ 14Feb 2012

10

8

$p+C \rightarrow \pi^{-}+X$ Low energy data 10³ do/(dp dΩ) [mb/(GeV/c·sr) target beam **CERN SPS** C, p 128GeV/c p **NA49** 10 **CERN SPS** C, Be... **NA61** 31GeV/c p, etc **π+-**10 **NA61** HARP **CERN PS** 3,5,8,9,12GeV/c p C,Be,p.. p_{beam} = 31GeV/c **π+-**58,120GeV/c p C,Be... MIPP **FNAL-MI** p [GeV/c] E[GeV] 103 106 10^{4} HARP p+C $\rightarrow \pi$ +X p_{beam} = 12 GeV/c**Relevant E** d²σ/dpdΩ [mb 100 00 00 150-200 mrad 200-250 mrad (10¹⁵eV shower) P_{lab}=10~10³GeV $E_0 = 10^{15} \, eV$ nucleons 10 2 2 6 8 0 0 6 2 3 4 5 p [GeV/c] log_(E/GeV) I. C. Maris, ICRC 2009

UHECR2012@ 14Feb 2012

Available accelerator data summary

35

UHECR2012@ 14Feb 2012

Available accelerator data summary

UHECR2012@ 14Feb 2012

Y.Itow, Review of Accelerator data

Summary

- Synergy btw UHECR and LHC is so important to solve UHECR problems and to explore ultra high E interactions at beyond-LHC.
- Key parameters for understanding air showers, σ_{inel}, forward spectra, inelasticity, multiplicity, P_T should be measured in various energy ranges.
 - \Box First TOTEM σ_{inel}
 - □ LHCf forward spectra
 - □ Recent progress in various energy range (i.e. NA61, HARP, etc.)
- Striking impacts on UHECR analysis has been given by recent LHC data as well as legacy data by various accelerator experiments. Stay tuned.
- Nuclear effects (QGP, shadowing, etc.) not address here are also important. LHC A-A, p-A run will be able to address it.

$p+C \rightarrow \pi X$ data ■ NA49 (p_{beam}=158GeV/c) NA61 (p_{beam}=31GeV/c)

:(JS-)

do/(dp dΩ) [mb/(GeV/

 10^{3}

10

10

XF

10

N_{trig} [x10⁶] yr 158 2009 5.5 $\pi^{-}C$ 350 2009 4.6 2007 pC 31 0.7 pC 31 2009 5.4 2010 0.7 13 pp 2011 2* 13 pp 20 2009 2.2 pp 31 2009 3.1 pp 40 2009 5.2 pp 80 2009 4.5 pp 158 2009 3.5 pp 158 2010 44 pp 158 2011 30* pp NA61(SHINE)

p_{beam} data sets

012

UHECR2012@ 14Feb 2012

HARP / MIPP

UHECR2012@ 14Feb 2012

Available accelerator data summary

C. Meurer et al.

Fig. 9. Compilation of the phase space regions covered by fixed target data given in transverse momentum and rapidity of secondary particles and the phase space regions covered by the $\theta - p_{sec}$

UHECR2012@ 14Feb 2012

(Tanguy Pierog)

UHECR2012@ 14Feb 2012

Parent particles relevant for LHCf observations

Gamma spectrum

Hadron spectrum

Sybill at 7TeV

UHECR2012@ 14Feb 2012

UHECR2012@ 14Feb 2012

Inelasticity

UHECR2012@ 14Feb 2012

LHCf forward spectra: Data/MC

High η

low η

UHECR2012@ 14Feb 2012

LHCf forward spectra: Data/MC

High η

low η

UHECR2012@ 14Feb 2012

Elasticity (X_F of leading baryon)

Y. Itow, Review of Accelerator data $p+p \rightarrow p+X$ at $P_{beam} = 205 GeV$ (FNAL bubble chamber)

UHECR2012@ 14Feb 2012

UA7 vs. PYTHIA8

Pare et al.

14 June 1990

10-2

10-3

10-4

10-5

hrPT norm20 $Y = 1.45 (x10^{5})$ Y= 1.25 (x10⁴) $Y = 0.95 (x 10^3)$ $Y = 0.60 (x 10^2)$ (10 N(1) 10 $Y = 0.25 (x10^{1})$ $Y = -0.15 (x 10^{0})$ 10 10

PYTHIA8 (histos) vs UA7 fit

1

1.2 1.4

1.6

1.8

P_T GeV/c

2

0.8

0.6

0.2 0.4

total cross section measurement [11]. The value $\langle p_t \rangle_0 = 400 \text{ MeV}/c$ has been taken from the UA2 measurement at $Y_{\text{lab}} = 6.3$ [2].

PYTHIA8 does not reproduce UA7 Can we confirm/update/improve UA7?

UHECR2012@ 14Feb 2012

LHCf forward spectra: Data/MC

High η

low η

UHECR2012@ 14Feb 2012

Setup in IP1-TAN (side view)

UHECR2012@ 14Feb 2012

(O.Adriani et al., PLB703 (2011) 128-134

The single photon energy spectra at 0 degree

DATA

15 May 2010 17:45-21:23, at Low Luminosity 6x10²⁸cm⁻²s⁻¹, no beam crossing angle

0.68 nb-1 for Arm1, 0.53nb-1 for Arm2

■ <u>MC</u>

- DPMJET3.04, QGSJETII03, SYBILL2.1, EPOS1.99 PYTHIA 8.145 with the default parameters.
- □ 10⁷ inelastic p-p collisions by each model.

Analysis

- □ Two pseudo-rapidity, >10.94 and 8.81<
- No correction for geometrical acceptance.
- Combine spectra between Arm1 and Arm2.
- □ Normalized by number of inelastic collisions with assumption as $\sigma_{\text{inela}} = 71.5$ mb.

(c.f. $73.5 \pm 0.6^{+1.8}$ mb by TOTEM)

Particle Identification

Event selection and correction

Select events <L_{90%} threshold and multiply P/

```
(photon detection efficiency) and P (photon purity)
```

UHECR2012@ 14Feb 2012

44r.l.

1.7

Calorimeter Depth

Elemag:

Hadronic:

 By normalizing MC template L_{90%} to data, and P for certain L_{90%} threshold are determined.

UHECR2012@ 14Feb 2012

Very forward – connection to low-x physics

Low-x

- Very forward
 - Very forward region : collision of a low-x parton with a large-x parton

high-x

- Small-x gluon become dominating in higher energy collision by self interaction.
- But they may be saturated (Color Glass Condenstation)

Naively CGC-like suppression may occur in very forward at high energy

 → However situation is more complex (not simple hard parton collsions, but including soft + semi-hard)

UHECR2012@ 14Feb 2012

What P_T range LHCf sees ?

pp 7TeV, EPOS

UHECR2012@ 14Feb 2012

RHIC: ⁰ *at s* =500*GeV*

 ✓ ZDC space at PHENIX (by Goto-san): 10cm radius beam pipe aperture at 18m => >5.9

UHECR2012@ 14Feb 2012

Forward production spectra vs Shower curve

UHECR2012@ 14Feb 2012

Main strength of LHCf – measurements of baryon 'stopping power' ('inelasticity' K_{inel})

 K_{inel} – crucial for studies of UHECR composition: direct impact on air shower X_{max} (along with σ^{inel}_{p-air})

UHECR2012@ 14Feb 2012

Contribution from very forward production

Half of shower particles comes from large $X_F \gamma$

Measurement at very forward region is needed

UHECR2012@ 14Feb 2012

Forward energy spectra

UHECR2012@ 14Feb 2012

Impact of parameters of interactions

Big LHC detectors

