

Z(II)H, H->WW at 240 GeV

2025-MAR-11 **H. Hernandez**, F. Martínez, I. Pedraza Benemérita Universidad Autónoma de Puebla México

Process: $ee \rightarrow ZH, H \rightarrow WW$

 $\mathbf{e}^{+} \, \mathbf{e}^{-} \rightarrow \, \mathbf{Z} \, \mathbf{H} \, \rightarrow \, \mathbf{Z} \, (\, \mu \mu) \, \, \mathbf{H} \, (\, \mathbf{W} \mathbf{W}) \, \rightarrow \, \mathbf{Z} \, (\, \mu \mu) \, \, \mathbf{W} \, (\, \mathbf{q} \, \overline{\mathbf{q}}) \, \, \mathbf{W} \, (\, \mathbf{q} \, \overline{\mathbf{q}) \, \mathbf{W} \, (\, \mathbf{Q} \, \overline{\mathbf{Q})} \, \, \mathbf{W} \, (\, \mathbf{Q} \, \overline{\mathbf{Q})} \, \, \mathbf{W} \, \mathbf{W}$

Process	Sample	Cross Section (pb)	Events processed
SIGNAL			
ee \rightarrow Z(µµ) H, H \rightarrow WW	wzp6_ee_mumuH_HWW_ecm240	0.001456	400,000
BACKGROUND			
$ee \rightarrow WW$	p8_ee_WW_ecm240	16.4385	74,728,784
ee →ZZ	p8_ee_ZZ_ecm240	1.35899	11,300,000
$ee \to Z(\mu\mu) \ \gamma$	wzp6_ee_mumu_ecm240	5.288	21,360,000
$ee \rightarrow Z(\mu\mu) \; H, \; H \rightarrow ZZ$	wzp6_ee_mumuH_HZZ_ecm240	0.0001786	400,000
ee \rightarrow Z(qq) H, H \rightarrow ZZ	wzp6_ee_qqH_HZZ_ecm240	0.001409	1,200,000
ee \rightarrow Z(bb) H, H \rightarrow ZZ	wzp6_ee_bbH_HZZ_ecm240	0.0007915	1,000,000
ee \rightarrow Z(cc) H, H \rightarrow ZZ	wzp6_ee_ccH_HZZ_ecm240	0.0006164	1,200,000
ee \rightarrow Z(ss) H, H \rightarrow ZZ	wzp6_ee_ssH_HZZ_ecm240	0.0007912	600,000

Final state:

- 2 μ's
- 4 jets

Muon selection:

- p > 20 Gev
- At least one with ISO > 0.25
- Exactly 2, opposite-charged

H. Hernandez - BUAP - 4

100

H. Hernandez - BUAP - 5

70

Jet Clustering and Choice of Di-Jet pairs $H \rightarrow WW^* \rightarrow qqqq$

- Exclusive Jet Clustering n=4, after veto of muons with p > 5 GeV and electrons with p > 5 GeV.
- Jet pairs selected by maximizing P_w, for at least one of the pairs (considered to come from the on-shell W).

$$P_{W,m_{jj}} = \frac{M_W^2 \Gamma_W^2}{(m_{jj}^2 - M_W^2)^2 + M_W^2 \Gamma_W^2}$$

Jet Clustering and Choice of Di-Jet pairs $H \rightarrow WW^* \rightarrow qqqq$

- Exclusive Jet Clustering n=4, after veto of muons with p > 5 GeV and electrons with p > 5 GeV.
- Jet pairs selected by maximizing P_w, for at least one of the pairs (considered to come from the on-shell W).

(Signal not stacked) m_{recoil} after selections and **significance**

Selections:

- 2 op-charged muons, 4 jets
- 86 GeV < m(μμ) < 96 GeV
- 30 GeV < p(μμ) < 57 GeV
- $\cos(\theta_{miss}) < 0.98$
- $n_{jet} = 4$
- $P_W^{-5} > 10^{-5}$ • $E_{miss} < 14.4 \text{ GeV}$
- $m_{\text{iir11}} > 10 \text{ GeV} \& \Delta R_{\text{iir11}} > 0.4$

Uncertainty of 2.2%

Significance before selections:

$$\sigma = \frac{s}{\sqrt{B}} = 2.29, \quad \hat{\sigma} = \frac{s}{\sqrt{s+B}} = 2.29$$

Significance after all selections:

$$\sigma = \frac{s}{\sqrt{B}} = 43.81, \quad \hat{\sigma} = \frac{s}{\sqrt{s+B}} = 34.82$$

Findings

to do

- Selections significantly reduce WW background, ZZ background.
- Recoil mass best candidate for fitting.
- There is more room for optimizing the selection.

- Shape fit with combine to get the final numbers.
- Work on the note for this study to be considered for the Feasibility Study Report.
- Analize Z(ee) in addition to Z(µµ).
- Employ BDT training with more statistics.

H. Hernandez, F. Martínez, I. Pedraza <u>arellano.haydee.hernandez@cern.ch</u>

AUXILIARY SLIDES

STACKED PLOTS

(STACKED) m_{recoil} after selections and significance

Selections:

- 2 op-charged muons, 4 jets
- 86 GeV < m(μμ) < 96 GeV
- 30 GeV < p(μμ) < 57 GeV
- $\cos(\theta_{miss}) < 0.98$
- $n_{jet} = 4$ • $P > 10^{-1}$
- $P'_W > 10^{-5}$ • E < 14.4 G
- E^{···}_{miss}<14.4 GeV
 m_{iif11}>10 GeV && ΔR_{iif11}>0.4

Uncertainty of 2.2%

Significance before selections:

$$\sigma = \frac{s}{\sqrt{B}} = 2.29, \quad \hat{\sigma} = \frac{s}{\sqrt{s+B}} = 2.29$$

Significance after all selections:

$$\sigma = \frac{s}{\sqrt{B}} = 43.81, \quad \hat{\sigma} = \frac{s}{\sqrt{s+B}} = 34.82$$

