The LHC from commissioning to operation

Mike Lamont for the LHC team

The LHC

Very big Very cold Very high energy

Energy

At 3.5 TeV with 1380 bunches – August 2011

-3 GJ of energy stored in the magnets
100 MJ stored in each beam ~21 kg of TNT.

Underpinned our thoughts during commissioning

During an SPS extraction test in 2004...

The beam was a 450 GeV full LHC injection batch of 3.4 10¹³ p+ in 288 bunches [2.5 MJ]

2009: besides massive repair and consolidation

Understanding the problem

- Copper stabilizer issue identified
- Measurement campaign warm and cold
- Simulations
- Test set-up (FRESCA)

Prevention

 Deployment of new Quench Protection System (design, prototyping, production, deployment, testing)

Caution

Run at 3.5 TeV

TUPS071 Performance of the Protection System for Superconducting Circuits during LHC Operation

2009: That which does not kill us...

Beam based systems

- Injectors & transfer lines
- Instrumentation: BPMs, BLMs
- Beam interlock System
- RF
- Collimators

Controls & software

- Sequencer
- Injection sequencer
- Settings management
- Middleware
- Timing
- Software interlocks
- Magnet model
- On-line model
- Logging

Dry runs, system tests and hardware commissioning

"Unprecedented state of readiness"

A closer look at

LHC from commissioning to operations

2010 – integrated luminosity

Transfer & injection

Injection

- Complex process wrestle with:
 - Re-phasing, synchronization, transfer, capture
 - Timing, injection sequencing, interlocks
 - Injection Quality checks SPS and LHC
 - Abort gap keeper
 - Beam losses at injection, gap cleaning
- Full program of beam based checks performed
 - Carefully positioning of collimators and other protection devices
 - Aperture, kicker waveform

Ramp

- Power converters (all magnet circuits), magnet model, RF, collimators, beam dump, transverse damper, orbit and tune feedback, BLM thresholds etc.
- Reproducible and essentially without loss (after a lot of work)

Main bend power converters: tracking error between sector 12 & 23 in ramp to 1.1 TeV

Squeeze

- Programmed functions making smooth transition between matched optics
- Tune and orbit feedbacks mandatory
- Reproducible and essentially without loss
 (a.l.w.)

TUPZ028 Beam Based Optimization of the Squeeze at the LHC

Tune and orbit feedback

- Mandatory in ramp and squeeze
- Commissioning not without some issues but now fully operational

Nominal cycle

Fastest turn around down from 3h40m in 2010 to 2h7m in 2011 after optimization

RF

- RF noise & crossing of 50 Hz by Qs in ramp no issue.
- Capture losses under control
- Longitudinal emittance blow-up, needed for ramping of nominal bunch intensity, rapidly commissioned.
- Beam-induced voltage and load power:
 - half nominal intensity dump beam on 1 klystron trip -5/43 fills to RF since July 2011

MOPC054 The LHC RF System Experience with Beam Operation MOPC057 Loss of Landau Damping in the LHC TUPZ010 Longitudinal emittance blow-up in the LHC

Transverse dampers

- Injection oscillations
- 'Hump' suppression
- Abort gap and injection gap cleaning
- Coherent instabilities
- (Blow-up for loss maps)

Beam Instrumentation: excellent performance

FRXCA01 First Years Experience of LHC Beam Instrumentation

Aperture

Aperture systematically measured (locally and globally) Better than anticipated w.r.t. tolerances on orbit & alignment

Aperture compatible with a well-aligned machine, a well centred orbit and close to design mechanical aperture

Optics

Optics stunningly stable

and well corrected

Two measurements of beating at 3.5 m 3 months apart Local and global correction at 1.5 m

WEPC028 Record Low Beta-beat of 10% in the LHC(!)

Magnet model

- Knowledge of the magnetic machine is remarkable
- All magnet 'transfer functions', all harmonics including decay and snapback
- Tunes, momentum, optics remarkably close to the model

TeV

energy

3.5

3

2.5

2

1.5

1

0.5

20

1400

2 A/s re-qual. ramp

2 A/s re-qual. ramp first 10 A/s ramp first 10 A/s ramp second 10 A/s ramp

second 10 A/s ramp

1200

time [s]

1000

800

Reproducibility

LHC magnetically reproducible with rigorous pre-cycling - set-up remains valid from month to month

Tune corrections made by feedback during squeeze

LHC from commissioning to operations

Machine protection – the challenge Situation at 3.5 TeV (in August 2011)

Beam Interlock System

239-2011

Beam Dump System (LBDS)

Absolutely critical. Rigorous and extensive program of commissioning and tests with beam.

 Expected about two asynchronous dumps per year – one to date with beam

Safety critical aspects of the Dump System

- Signal from beam interlock system and triggering
- Energy tracking
- Extraction kicker retriggering after single kicker erratic
- Mobile protection device settings
- System self-tests and post-mortem
- Aperture, optics and orbit
- Extraction dilution kicker connection and sweep form
- Abort gap 'protection'
- Fault tolerance with 14/15 extraction kickers

Number of unacceptable dump system failures: 1 every 1000000 years

"Eternal vigilance is the price of liberty"

Collimation

beam

Two warm cleaning insertions

IR3: Momentum cleaning 1 primary (H) 4 secondary (H,S) 4 shower abs. (H,V) IR7: Betatron cleaning 3 primary (H,V,S) 11 secondary (H,V,S) 5 shower abs. (H,V)

Local IP cleaning: 8 tertiary coll.

Total = 108 collimators About 500 degrees of freedom.

Collimation

- Triplet aperture must be protected by tertiary collimators (TCTs)
- TCTs must be shadowed by dump protection (not robust)
- Dump protection must be outside primary and secondary collimators
- Hierarchy must be satisfied even if orbit and optics drift after setup
 - margins needed between collimators

Collimation cleaning at 3.5 TeV

Exit 2010: beam parameters

	2010	Nominal
Energy [TeV]	3.5	7
beta* [m]	3.5, 3.5, 3.5, 3.5 m	0.55, 10, 0.55, 10
Emittance [microns]	2.0 – 3.5 start of fill	3.75
Bunch intensity	1.2e11	1.15e11
Number of bunches	368 348 collisions/IP	2808
Stored energy [MJ]	28	360
Peak luminosity [cm ⁻² s ⁻¹]	2e32	1e34

Lead ion run 2010

• Collisions within 54 hours of first injection

Beam 1 Inj., Beam 2 Circ. Inj., Circ. & Capture & Capture

Optics Checks BI Checks Collimation Checks First Ramp Collimation Checks Squeeze

Experience and Lorentz's law.

TUPZ016 First Run of the LHC as a Heavy-ion Collider

2011 - Oh What a Year The new thumb rule: ~500 pb⁻¹/week and more to come

So ns bunch trains with 6-8 interactions/crossing

The analyses presented here are based on 1-2.3
 fb⁻¹/experiment

eilam groseillat, griber TSP, August 2011

Number of bunches A Peak Luminosity

Beam from injectors

Higher than nominal bunch intensity Smaller than nominal emittance

Bunch spacing	From Booster	Np/bunch	Emittance H&V [mm.mrad]
150	Single batch	1.1 x 10 ¹¹	1.6
75	Single batch	1.2 x 10 ¹¹	2.0
50	Single batch	1.45 x 10 ¹¹	3.5
50	Double batch	1.6 x 10 ¹¹	2.0
25	Double batch	1.2 x 10 ¹¹	2.7

At present: ~1.3 x 10¹¹ppb, 2.0 microns into collision

TUPZ019 Transverse Emittance Preservation through the LHC Cycle MOPS009 Probing Intensity Limits of LHC-type Bunches in SPS with Nominal Optics

2011: (c/o Atlas & LHCb)

Peak stable luminosity	2.37 x 10 ³³ cm ⁻² s ⁻¹	
Max. luminosity in one fill	100.71 pb ⁻¹	
Max. luminosity delivered in 7 days	499.45 pb ⁻¹	
Longest time in stable beams	26.0 hours	
Longest time in stable beams for 7 days	107.1 hours (63.7%)	
Fastest turnaround	2 hours 7 minutes	

24% of design luminosity:

- half design energy
- nominal bunch intensity+
- ~half nominal emittance
- beta* = 1.5 m (design 0.55 m)
- half nominal number of bunches

Fill 2006: Luminosity lifetime

2011 parameters – end August

Energy [TeV]	3.5
Beta* [m]	1.5, 10, 1.5, 3.0 m
Normalized emittance [microns]	~2.0 start of fill
Bunch intensity	1.2 – 1.3e11
Number of bunches	1380 1318 collisions/IP1&5
Bunch spacing [ns]	50
Stored energy [MJ]	90 to 100
Peak luminosity [cm ⁻² s ⁻¹]	2.37e33
Beam-beam tune shift (start fill)	~0.023

beta* = 1 m commissioning ongoing
~50 days proton physics left in 2011

AVAILABILITY - EFFICIENCY

UFOs in the LHC

- Since July 2010, 35 fast loss events led to a beam dump.
- 18 in 2010, 17 in 2011.
 13 around MKIs.
 6 dumps by experiments.
 1 at 450 GeV.
- Typical characteristics:
 - Loss duration: about 10 turns
 - Often unconventional loss locations (e.g. in the arc)
- The events are believed to be due to (<u>U</u>nidentified)
 <u>Falling O</u>bjects (UFOs).

Spatial and temporal loss profile of UFO on 23.08.2010

TUPC137 Dust Particles in the LHC

Single Event Effects

UJ17

2137

Major campaign ongoing: shield and relocate

Dumps > 450 GeV July-August

5-9-2011

Availability 2011

Beam in ~48% of the time

Conclusion

- Very successful commissioning:
 - Hard work plus experience, preparation, time, the injectors, collaboration, 21st century technology, engineering, hardware, teamwork, care, expertise, motivation, dedication, leadership, controls, diagnostics, tools, resources...
- Good transition from commissioning to operations
 - Cycle is solid
 - Machine protection working very well
 - Availability with high intensity acceptable with issues being addressed

Acknowledgements

 The LHC is a beautiful machine. The superb progress so far is a real testament to the dedication of the CERN staff and the help we have received from our international collaborators.