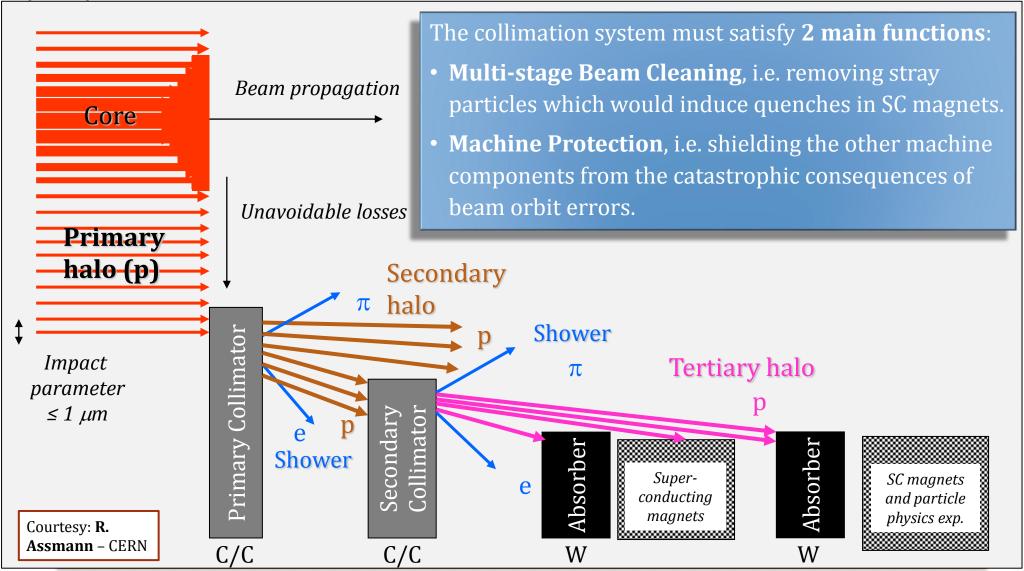


Research and Development of Novel Advanced Materials for Next-generation Collimators

A. Bertarelli, G. Arnau Izquierdo, F. Carra, A. Dallocchio, M. Gil Costa, N. Mariani


CERN, Geneva, Switzerland

IPAC 2011 – Donostia-San Sebastián, Spain 08.09.2011

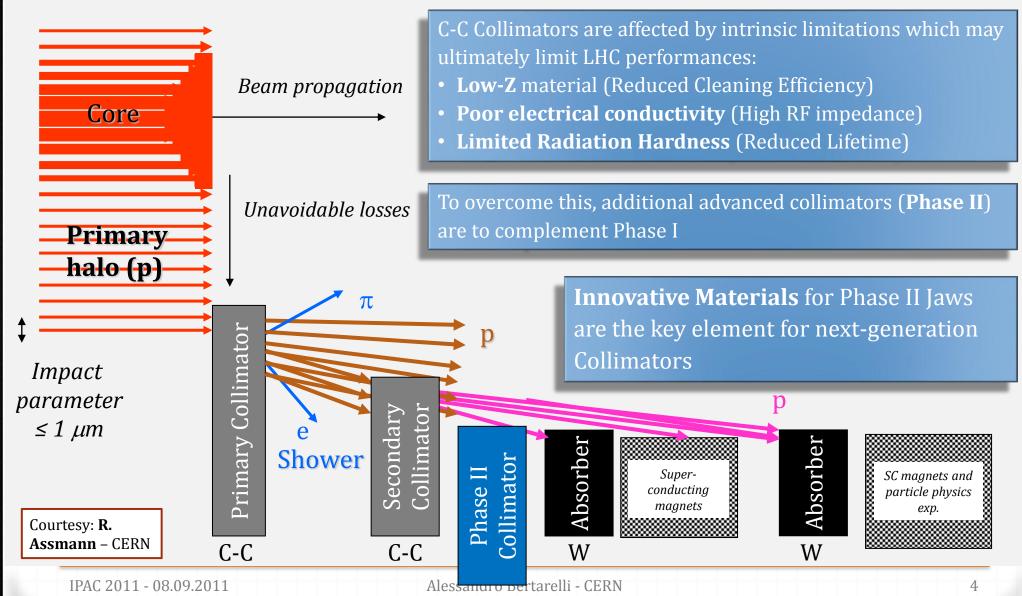
What is a (Phase I) LHC collimator

What is a (Phase I) LHC Collimator

Several types of collimators at multiple locations required.

Secondary Collimator (TCSG) Cutaway

• Very complex system (100+ LHC Collimators)


I.HC Phase I Collination System
Reliable Robust

Adequate up to LHC Nominal Conditions

Actuation system

Limits of Phase I Collimators

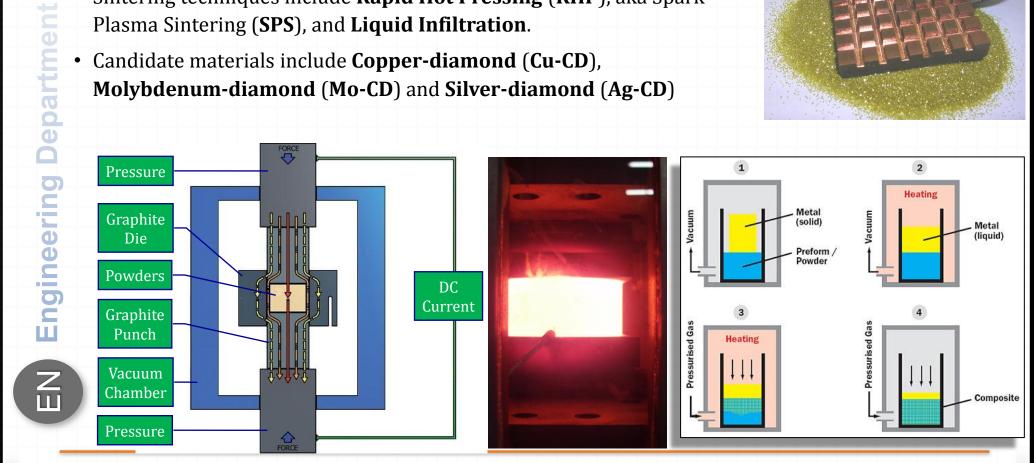
Figures of Merit

Five Figures of Merit have been identified to classify and rank candidate materials

- Electrical Conductivity Must be maximized to limit RF impedance
- Steady-state Stability Normalized Index (SSNI) Indicates the ability to maintain jaw geometrical stability
- Transient Thermal Shock Normali-Related to highest particle absorption indicator)
- These indicators are partly self-conflicting. A fit-all material does not exist! Can metal-diamond composites be the answer? Atomic N

Adı aı "standard" requirements include ...

 Radiation Hardness, UHV Compatibility, Industrial producibility of large components (up to 400x80x25 mm³), Possibility to machine, braze, join, coat ..., Limited brittleness



Metal-diamond Composites

- **Metal-diamond composites** are advanced thermal management materials combining properties of Diamond (namely high k and low CTE) with those of Metals (**strength**, γ , etc.).
- Sintering techniques include **Rapid Hot Pressing** (**RHP**), aka Spark Plasma Sintering (SPS), and Liquid Infiltration.
- Candidate materials include **Copper-diamond** (**Cu-CD**), Molybdenum-diamond (Mo-CD) and Silver-diamond (Ag-CD)

Material Ranking

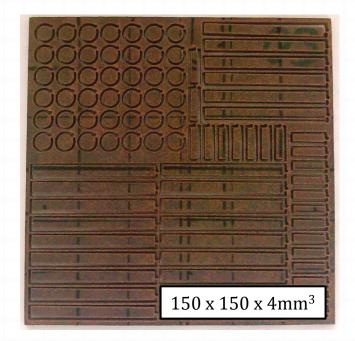
Material	C-C	Мо	Glidcop ®	Cu-CD	Mo-CD	Ag-CD
Density [kg/m³]	1650	10220	8900	~5400	~6900	~6100
Atomic Number (Z)	6	42	29	~11.4	~17.3	~22.4
T _m [°C]	3650	2623	1083	~1083	~2623	~840
SSNI [kWm²/kg]	24	2.6	2.5	13.1 ÷ 15.3	6.9 ÷ 10.9	11.4 ÷ 15.4
TSNI [kJ/kg]	793	55	35	44 ÷ 51	72 ÷ 96	60 ÷ 92
Electrical Conductivity [MS/m]	0.14	19.2	53.8	~12.6	~9.9	~11.8

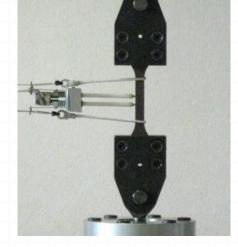
worse

better

- **C-C** stands out as to thermo-mechanical performances. Adversely outweighed by poor electrical conductivity, low Z, expected degradation under irradiation.
- **High-Z metals** (**Cu**, **Mo**) possess very good electrical properties. High density adversely affects their thermal stability and accident robustness.
- Metal-diamond composites exhibit a balanced compromise between TSNI, SSNI, electrical conductivity, density, atomic number.
- Mo-CD limits the consequences of high temperatures induced by very intense beam impacts

Department

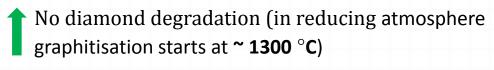

ineering

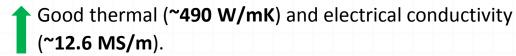


Cu-CD Composites

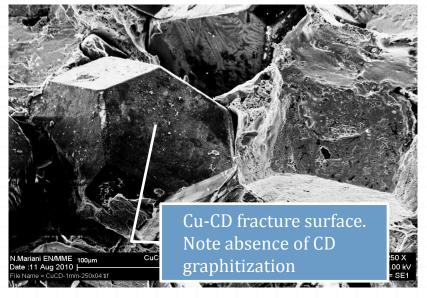
- Cu-CD developed by RHP-Technology (spin-off of Austrian Institute of Technology), Austria
- Characterized in the frame of **EuCARD** / ColMat collaboration
- R&D objectives:
 - Geometrical stability
 - Electrical conductivity
 - Intermediate density
- Produced by RHP under N₂ + H₂
 Atmosphere
- 60% Diamond, 40% Cu
- Small addition of Boron
- Sintering T $\sim 1000^{\circ}$ C
- Good homogeneity and compaction rate (~95%)

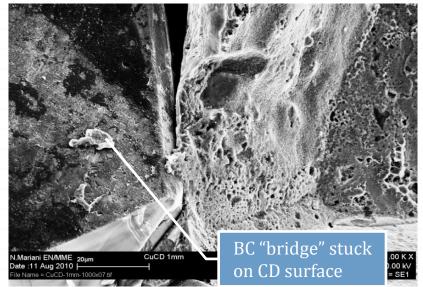
Z W


Courtesy: E. Neubauer, M. Kitzmantel – RHP-Tech



Cu-CD Composites

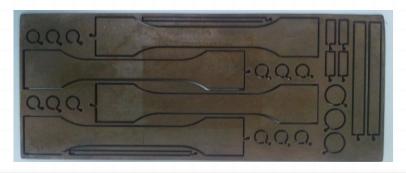



No direct interface between Cu and CD (lack of affinity). Limited bonding surface assured by Boron Carbides hampers mechanical strength (~120 MPa).

BC brittleness adversely affects material toughness.

Cu low melting point (1083 °C) limits Cu-CD applications for highly energetic accidents.

CTE increases significantly with T due to high Cu content (from ~6 ppmK⁻¹ at RT up to ~12 ppmK⁻¹ at 900 °C)

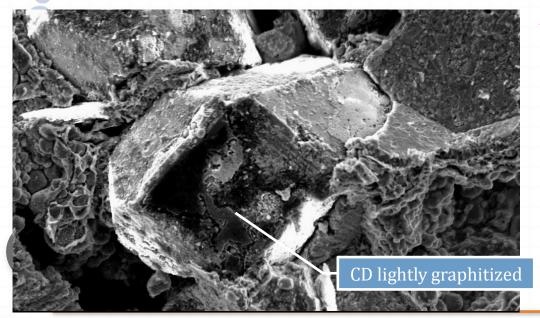

BREVETTI BIZZ

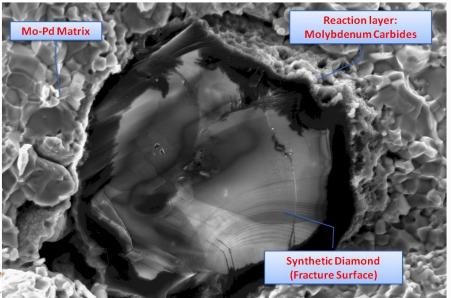
Mo-CD Composites

- Co-developed by CERN and a SME, Brevetti Bizz, Verona, Italy
- R&D objectives :
 - **Decrease** pure Mo **density** to optimize deposited energy distribution
 - Increase mechanical properties w.r.t. other Metal-CD
 - Increase thermal stability and robustness at high temperatures

- Manufactured through RHP
- Mo and CD create a good interface by forming Mo Carbides.
- Large components can be produced.
- High sintering T of Mo (~1700 °C) leads to diamond graphitisation. 2 alternative processes:
 - Assisted Solid-state Sintering (ASS)
 - Liquid Phase Sintering (LPS)

BREVETTI BIZZ

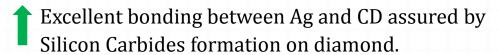

Mo-CD Composites

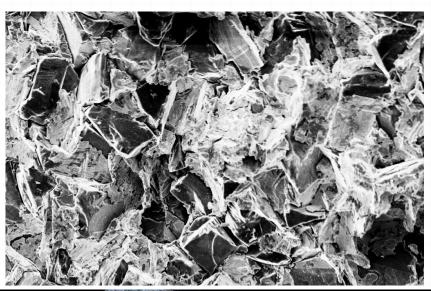

Liquid Phase Sintering (LPS)

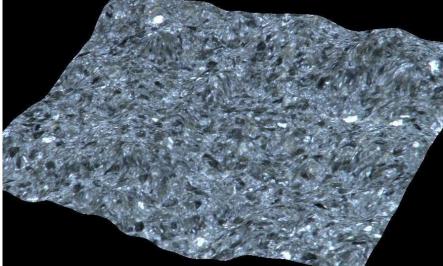
- Addition of low-melting phase (Cu or Cu-Ag) to fill in the pores between Mo and CD
- Good mechanical strength (400+ MPa) and Thermal Conductivity (185 W/mK)
- Max T_{Service} limited by low-melting phase (Cu)

Assisted Solid-state Sintering (ASS)

- Addition of small amounts of activating elements (Ni, Pd) enhances Mo sintering at low T (~1300 °C)
- Absence of low-melting phase increases service T up to ~2600 °C
- Large diamond particles interfere with Mo compaction.
- Diamond graphitization not fully avoided.

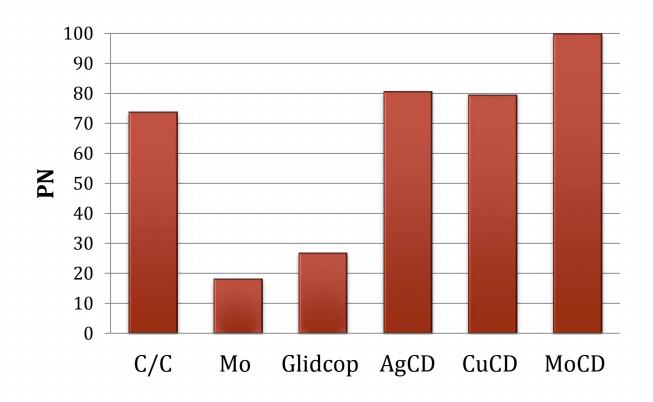



Ag-CD Composites



- Characterized at EPFL and CERN (EuCARD).
- Manufactured by Liquid Infiltration of cylindrical samples (Ø100 mm, H 100 mm)
- ~60% Diamond, ~40% Ag-Si alloy

- THigh Flexural Strength (~500 MPa) and toughness.
- **1** High Electrical Conductivity.
- Max T_{Service} limited by low-melting eutectic phase Ag-Si (**840** °**C**).
- Hard to manufacture large components (>100 mm)
 - Material non homogeneities due to liquid metal infiltration intrinsic limitations.



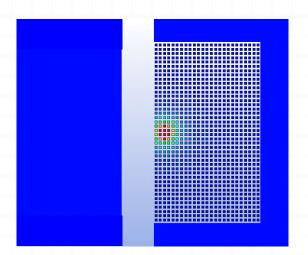
Studied material comparison

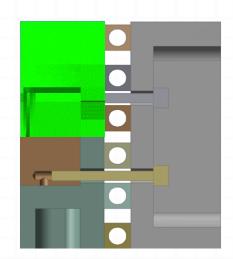
- A single, comprehensive comparison of characterized materials is proposed on the basis of normalized Figures of Merit.
- Needless to say, any choice of Figures of Merit, of their combination and target values is arbitrary ...
- This said, this comparison confirms that Mo-CD is, so far, the best candidate.

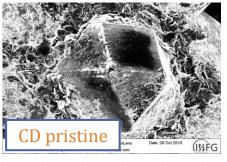
$$Pn_i = [P_i/Max(P)]$$

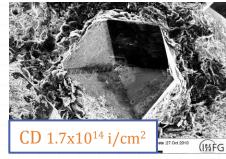
$$Pn_Z = 1 - \left(\frac{|Z - 12|}{42}\right)$$

$$PN = \frac{\prod Pn_i}{Max(\prod Pn_i)}$$

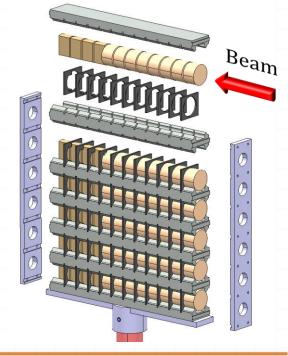





Simulations and Testing



- Irradiation damage tests at RRC-KI and GSI.
- Preliminary results from GSI on Cu-CD show no degradation of Cu/CD interface. Defects in CD lattice seem to occur.
- Advanced simulations being performed at CERN and Polito on materials under extreme conditions.
- Beam tests in CERN's HiRadMat to experimentally assess material models.



Courtesy: **M. Tomut** – GSI

Conclusions

- Bringing LHC beyond nominal performances might require new generation collimators embarking novel advanced materials.
- Metal-diamond composites are particularly appealing as they promise to combine diamond and metal properties.
- Figures of Merit were defined, allowing to pinpoint "best" candidates and to set ambitious goals.
- An intense R&D program has been launched at CERN with partners partly within the EuCARD collaboration
- Cu-CD, Mo-CD and Ag-CD were studied and successfully produced. Size challenge has been met for Cu-CD and Mo-CD.
- A large characterization effort has been carried out: a magic material does not exist, but Mo-CD seems to stand out as a balanced compromise between key parameters.
- Radiation hardness assessment is ongoing for selected materials. Beam tests under extreme conditions are foreseen at CERN's HiRadMat facility.
- The R&D program is still in full progress.

Acknowledgements

This work would have been impossible without the excellent contributions of many people:

- S. Bizzaro, Brevetti Bizz
- R. Assmann, E. Berthomé, V. Boccone, F. Cerutti, M. Guinchard, CERN
- L. Weber, *EPFL*
- M. Tomut, GSI
- L. Peroni, M. Scapin, Politecnico di Torino
- M. Kitzmantel, E. Neubauer, RHP-Technology
- A. Ryazonov, RRC-Kurchatov Institute

What is a (Phase I) LHC Collimator

Robustness Test at 450 GeV 3.2x10¹³ protons Collimator jaws after impact ... no signs of mechanical damage

- 5 full intensity shots ranging
- Each impact energy equivalent

I.HC. Phase I collimation System

I.HC. Phase I collimation System

Reliable Robust

Adequate up to I.HC. Nominal conditions

Engineering

carbon jaw

Graphite jaw