

The First Years

Experience of LHC Beam Instrumentation

IPAC 2011 September 4th - 9th 2011 San Sebastián, Spain.

Rhodri Jones (CERN Beam Instrumentation Group)

Outline

The use of Beam Instrumentation in Commissioning and Understanding the LHC

- Early Diagnostics
- Safe Operation
 - Machine Protection
- Optimisation of Operation
 - Beam Based Feedbacks
 - Bunch by Bunch Diagnostics
 - Helping the Experiments
 - Luminosity calibration
- Future Developments

Early Diagnostics

- Threading the first pilot bunch round the LHC ring
 - Injection visible on scintillator screens
 - Trajectory using BPMs one beam at a time, one hour per beam
 - Closed orbit BPMs updating at 1Hz
 - Dump lines visible on BPMs and large scintillator screen

Early Diagnostics

- Threading the first pilot bunch round the LHC ring
 - Injection visible on scintillator screens
 - Trajectory using BPMs one beam at a time, one hour per beam
 - Closed orbit BPMs updating at 1Hz
 - Dump lines visible on BPMs and large scintillator screen

2nd International Particle Accelerator Conference – 4th to 9th September – San Sebastián, Spain

Early Diagnostics

- Threading the first pilot bunch round the LHC ring
 - Injection visible on scintillator screens
 - Trajectory using BPMs one beam at a time, one hour per beam
 - Closed orbit BPMs updating at 1Hz
 - Dump lines visible on BPMs and large scintillator screen

Uncaptured beam sweeps through the dump line

2nd International Particle Accelerator Conference – 4th to 9th September – San Sebastián, Spain

Safe Operation - Machine Protection

- Role of the BLM system:
 - Protect the LHC from damage
 - Dump the beam to avoid magnet quenches
 - Diagnostic tool to improve the performance
- Design criteria
 - Signal speed and reliability
 - Dynamic range > 10⁹
 - Electronics $\Rightarrow 10^7$
 - Choice of detector $\Rightarrow 10^4$
- Detectors
 - ~3600 Ionisation Chambers (IC)
 - 50 cm, 1.5l N₂ gas filled at 1.1 bar
 - Ion collection time 85 μs
 - ~300 Secondary Emission Monitors (SEM)
 - 10 cm, pressure $< 10^{-7}$ bar
 - ~ 30000 times smaller gain than IC
- Electronics
 - Current to Frequency conversion
 - Losses integrated & compared to threshold table
 - 12 time intervals (1 turn to 100s) and 32 energy ranges

BLMs & Collimation

- Full collimation setup
 - BLM system used both for setting-up and qualifying
 - Beam cleaning efficiencies ≥ 99.98% ~ as designed

3eam Loss [Gy/s]

Observing Fast Losses

- 7th July 2010 BLMs request beam dump as result of fast (ms) beam loss
 - Since then 28 beam dumps requested due to similar losses
 - Believed to be caused by "Unidentified Falling Objects" or UFOs
 - Subsequent study showed more than 5000 candidates most well below threshold
 - UFO rate during physics fills is now ~5 per hour

BLM Thresholds

2nd International Particle Accelerator Conference – 4th to 9th September – San Sebastián, Spain

Thresholds Compared to Noise Levels

- Are the thresholds safely above the noise levels?
 - YES up to 5TeV
 - Noise proportional to cable length
 - May require RadHard ASIC CFC for full performance at 7TeV
 - Would allow mounting front-end electronics near BLM

Machine Optimisation - Feedbacks

- Opted for central global feedback system regrouping:
 - Orbit, energy, tune (operational)
 - Chromaticity, coupling (tested)
- Initial requirements:
 - Chromaticity expected to be most critical parameter for real-time control
 - Large perturbations foreseen & tight tolerances required
 - BUT
 - Large losses during early ramps changed focus to tune followed by orbit feedback
 - Orbit-Feedback is the largest and most complex LHC feedback:
 - 1088 BPMs \rightarrow 2176+ readings @ 25 Hz from 68 front-ends
 - 530 correction dipole magnets/plane, distributed over ~50 front-ends
 - Total >3500 devices involved
 - more than half the LHC is controlled by beam based feedbacks!

Ethernet

Orbit Feedback in the LHC

- Bandwidth of 0.1 Hz with BPM data supplied at 25Hz
- Regularised SVD approach to calculate applied correction
- Can maintain orbit stability to better than \sim 70µm globally & \sim 20µm in the arcs

Orbit Feedback in the LHC

Earth Tides dominating Orbit Stability during Physics

2nd International Particle Accelerator Conference – 4th to 9th September – San Sebastián, Spain

Rhodri Jones (CERN)

∆x≈200 µm

Orbit Stability Limitations

- Main performance limitation of orbit feedback
 - Systematic BPM reading dependence on temperature
 - Initially caused drifts up to 300µm on long-term orbit
 - Suppressed to the order of 100µm by
 - Calibration before each fill
 - Temperature compensation of each individual BPM channel
 - Long term solution place electronics in temperature controlled racks

^{2&}lt;sup>nd</sup> International Particle Accelerator Conference – 4th to 9th September – San Sebastián, Spain

Tune Feedback in the LHC

- With full pre-cycling the fill-to-fill stability is now typically 2-3×10⁻³
- Variations frequently increase up to 0.02
 - Due to partial or different magnet pre-cycles after e.g. access or sector trips
- Tune-FB routinely used for physics ramps to compensate these effects
 - Using peak fit on FFT with 0.1..0.3 Hz Bandwidth

Tune Feedback & Active Damping

- BBQ noise-floor raised by 30 dB
 - wide tune peak \rightarrow reduces tune resolution from $10^{-4} \rightarrow \sim 10^{-2}$
 - Impacts reliable tune (and coupling) measurement & feedback
 - Incompatible with chromaticity measurements using small Δp/p-modulation

• Only solution found so far is to run damper with lower gain

Optimisation of Operation

- Bunch by bunch diagnostics
 - Synchrotron Light Monitors
 - Energy high enough to obtain sufficient visible light for both protons and ions

Transverse Profile Measurement

- CCD camera fitted with gated intensifier
 - Used from very early stage to investigate emittance growth
 - Understanding of the optics & error sources ongoing for absolute calibration

Bunch by Bunch Transverse Profiles

- In 2011 implemented gated mode
 - Allows profile of single bunch to be captured in a few seconds
- Operational uses
 - Identify instabilities leading to emittance growth
 - Verify correct injection parameters from injectors
- Limitations
 - Time required to scan over all bunches
 - 10 times faster readout being investigated
 - Intensified fast camera under test

804 bunches - with strong electron cloud activity

after some time of vacuum chamber scrubbing

CERN

Longitudinal Density Monitor (LDM)

- Aims:
 - Profile of the whole LHC ring with 50ps resolution
 - High dynamic range for ghost charge measurement
- Method:
 - Single photon counting with Synchrotron light
 - Avalanche photodiode detector
 - 60ps resolution TDC

Longitudinal Bunch Shape

LDM On-line Correction

LHC Optimisation with the LDM

- Achievements:
 - Dynamic range of up to 10⁵ with integration time of a few minutes
- Used for:
 - Injector optimisation
 - Detection of large satellite populations
 - Led to injection cleaning using transverse damper
 - Avoids triggering beam dump due to satellites kicker out by injection kicker
 - Optimisation of LHC RF
 - Ghost bunches observed during LHC ion run in 2010
 - Came from RF manipulations to improve capture efficiency of main bunches

Lead ions at 3.5 Z TeV 10 min integration

Helping the Experiments

- LHC Experiments use precise cross-section measurements to constrain *pp* interaction models & detect or quantify new phenomena due to physics beyond the Standard Model
 - Required accuracy on absolute value of cross section is 1-5%
- Two methods used in LHC
 - "van der Meer scan"
 - "beam-gas imaging"
- Both methods require a measurement of the individual populations of the bunches contributing to the luminosity
- Providing bunch by bunch intensity for absolute luminosity calibration is the job of the LHC Beam Current Transformers
 - Their errors was a major contribution to the final precision in 2010
 - estimated 3% absolute accuracy of bunch population measurement
 - Triggered fruitful collaboration between BI Group & LHC Experiments
 - Pushed LHC Beam Current Transformer performance to its limits
 - Well beyond requirements for normal operation

BCT Error Sources & their Mitigation

- Bunch pattern dependence & saturation of the DCCT
 - Modified DCCT feedback loop, wall-current bypass & front-end amplifiers
 - Uncertainty in the absolute DCCT calibration now at the 0.1% level
- Satellite bunches and unbunched beam
 - Produces uncertainty in cross-calibration of FBCT with DCCT
 - LDM & data from experiments used to ensure this is well below 1%

BCT Error Sources & their Mitigation

- Bunch length dependence of the fast BCT
 - Mitigated with 70MHz LP filters still allows bunch-by-bunch measurement
- Bunch position dependence of the fast BCTs
 - At 1% per mm this effect was not at all expected
 - Found to come from commercial toroid used new monitor under development
 - Fortunately orbit is kept sufficiently stable & limits effect to well below 1%

Helping the Experiments - Outlook

• 2011

- Important progress made in understanding many error sources
- Should bring bunch population uncertainties in line with other experimental sources for absolute luminosity determination

The Future

- Improvements to the LHC Collimators
 - LHC equipped with over 100 collimators
 - Beam-based setup time is non-negligible using current BLM method
 - Tighter tolerances will be required for future LHC operation
- Next generation collimators will contain embedded BPM
 - Should drastically reduce set-up time
 - Will allow constant monitoring of beam v jaw position
 - Design & test of components underway
 - New acquisition electronics being developed
 - Based on compensated diode detection giving sub-micron resolution

2nd International Particle Accelerator Conference – 4th to 9th September – San Sebastián, Spain

- The LHC is a complex collider with a tremendously high beam power & can only be operated ...
 - efficiently with excellent diagnostics
 - safely with a high performance and failsafe beam loss system
- Bunch-by-bunch diagnostics is required from most instruments
 - Has proven essential for tracking down instabilities and optimising operation
- Many critical measurements (Q,Q'...) must be performed without significant emittance degradation
 - Made possible through sensitive BBQ system using only self-excitation of the beam
- Challenges ahead
 - Continued optimisation and understanding of installed instruments
 - Temperature stabilised racks for BPM system, new FBCT toroids,
 - Development of new instruments & techniques
 - Collimator BPMs, fast diamond detector BLMs, fast imaging systems,....