

The European Dipole Project

A Portone, Fusion For Energy

<u>OUTLINE</u>

- 1. Design (Specs, design options, key features)
- 2. Manufacturing (DC Coils Winding, Reaction Heat Treatment, Impregnation)
- 3. Acceptance Tests (Electrical and Hydraulic tests, insulation repair work)
- 4. Conclusions

Special thanks to: Amend, Baker, Bauer, Bertinelli, Besi, Bruzzone, Cau, della Corte, Di Zenobio, Duglue, Fernandez, Fabbricatore, Gartner, Maccaferri, March, Molinari, Musenich, Salpietro, Sattler, Scheller, Stepanov, Testoni, Theisen, Vogel, Vostner, Weiss, Wesche

MAGNET DESIGN

SPECIFICATIONS

Specifications

- Magnet test facility for sc samples with current up to I~100 kA
- Background DC field B_{DC}=12.5 T in clear bore
- Rectangular (circular) clear bore of $15 \times 10 \text{ cm}^2 (\emptyset = 13 \text{ cm})$
- AC field with $B_{AC} \sim \pm 0.3$ T, f~1-5 Hz, $B_{DC} \sim 2-3$ T ($B_{AC} \perp B_{DC}$)

To assess the design options, common reference were set for:

• Strand scaling (Summer)

→ B_{c20m} =28 T, T_{c0m} =18 K, J_{c} (12T, 4.2K, -0.25%) = 2000 A/mm²

- Thermal strain $\varepsilon_{th} = -0.6\%$ for CICC, otherwise $\varepsilon_{th} = -0.3\%$
- Index n = 7 for CICC
- Delay for current dump t₀ = 0.25 s, dump voltage < 2 kV
- Turn Insulation 0.4 mm wrap, ground insulation 2 mm thick

Block	Layer	Number of conductors
1	1	20
2	1	11
3	1	16
4	2	25
5	2	32
6	3	30
7	3	35
8	4	36
9	4	37

Where ϕ is the strand diameter, *h* the cable height, *wi* the small side thickness, *wo* the large side thickness and *N* the number of strand in the cable.

	OST cable	Alstom cable
$h (\mathrm{mm})$	14.56	17.16
wi (mm)	1.218	1.436
wo (mm)	1.330	1.568
Mid thickness (mm)	1.274	1.502
Radial insulation thickness (mm)	0.2	0.2
Azimuthal insulation thickness (mm)	0.2	0.2

OST cable	1	1	1	1	1	1	-	1	2	1	1	-	-	-	-	8	turns	242
II I (T)	ì	ŧ	1	1	7	1	1	1	2	1	-	-	-	-	-	-	I(kA)	6.51
	ł	ŧ	+	+	ł	1	1	1	1	1	0	~	+	+	•	*	$B_{peak}(T)$	13.56
12.84 - 13.56	1	ł	1	1	1	1	1	1	1	5	Ć		1	-	-	-	L (mH/m)	142
11.42 - 12.13	i	ł	ł	4	1	1	1	N		1	2	2	4	4	-	-	$\Delta T(K)$	1.9
0.280 - 10.00	1	ł	+	ŧ	1	1	4			X	Ľ	1	X		8	1	E (MJ/m)	3.00
7.865 - 8.577	1	:	1	1	1	4		à		4	S		-	Z		2		
6.441 - 7.153	1	ŧ	ŧ	+	ł	1	K	(S	A	X	1	2		P	-	×	N N	
5.018 - 5.729	1	1	1	1	1	1	1	1	ą.		Y.	The the	-	Ć	1	ì		
2.882 - 3.994	i	ł	i	ŧ	ł	ţ	ŧ	ŧ	1	et	F	i.	1					
2170 - 2882	1	1	1	1	1	1	1	t	1		4		4	1				
0.746 - 1.458		ł	ł	ł	ł	Į.	-	ł	ł	Contraction of the local division of the loc			4					
	0	11	2	1.43	ſ	42.	86	11	64.2	9	8	5.71	5	107	7.14		28.57	

Coils	Соо	l down	Energization		
Stress (MPa)	$\sigma_{ heta}$	σ _r	$\sigma_{ heta}$	σ_{r}	
Average over coil	-157	-52	-160	-78	
Average over mid-plane	-142		-178		
Average over pole plane	-177		-112		
Minimum over pole plane	-23		-10		
Point A	-182		-231		
Point B	-75		-103		
Point C	-188		-35		
Point D	-23		-10		
Displacement (mm)	Δ_{Θ}	Δ_{r}	$\Delta_{ heta}$	Δ _r	
Average over midplane		-0.696		-0.582	
Average over pole plane	-0.144	-0.775	-0.190	-0.779	
Collars Peak von Mises stress	1	292	1236		

Conclusions (CEA)

- 1. Safety margin on load line < 10 %
- 2. Protection OK, but quench heaters needed on each layer
- 3. Losses acceptables for 0.01 T/s
- 4. Mechanics : Stresses on coils are too high
- 5. \rightarrow Alternative mechanical structure \rightarrow time consuming development
- 6. \rightarrow or decrease of B²R by 35 % ??
 - 1. Ø 130 mm → B ~ 10 T
 - 2. $B = 12.5 T \rightarrow \emptyset$ coil ~ 94 mm $\rightarrow \emptyset$ ~ 80 mm

Final assessment: $Cos(\theta)$ design

Excellent compactness, field quality and magnetic design features

→ However, this design did not seem mature for its engineering phase since the results presented show the need of a substantial improvement from the mechanical design standpoint (Von Mises stresses in the collar structure exceed 1.2 GPa, peak stresses in strands ~ 230 MPa i.e. ~ 50% above maximum allowable)

Racetrack design (P Bruzzone et al. CRPP)

	Flat o	cable	CICC					
	high grade	low grade	high grade	low grade				
Strand diameter, mm	1.31	1.13	0.85	0.90				
Cu:non-Cu	2.	2	1					
Coating	No	ne	Cr					
RRR	20	0	100					
# of sc/cu strands	40 / ø 25 / 21		144 / ø	54 / 27	27 / 54			

Racetrack design (P Bruzzone et al. CRPP)

Electromagnetic, 2D results for planar race track coils 12.5 T at test well

	Flat	cable	CICC				
	high grade	low grade	high grade medium grade low grade				
Peak field in WP	13.7 T 10.8 T		13.17 T	10.67 T	8.22 T		
T _{cs}	6.45 K 6.67 K		6.20 K	6.31 K	6.34 K		
Operating current	11.6	kA	19.35 kA				
Eng. current density	139	156	67.6	93.6			
Non-cu current density	690 1487		473	473 1127			
Operating temperature	4.2	K	4.5 - 4.7 K				
Equiv. Iron Radius	400	mm	500 mm				
Temperature margin	2.25 K 2.47 K		≈ 1.6 K	≈ 1.7 K			
Stored Energy/m	12.6 M	MJ/m	17.8 MJ/m				
Inductance /m	188 n	nH/m	95.1 mH/m				

Racetrack design (P Bruzzone et al. CRPP)

JAN 12 2005 16:14:20 PLOT NO. NODAL SOLUTION STEP=1 SUB =1 TIME = 1SINT

SMX

(AVG) PowerGraphics EFACET=1 AVRES=Mat DMX = .540E-03 SMN =.343E+07 =.117E+09

.343E+07 .161E+08 .287E+08 .414E+08 540E+08 .667E+08 .793E+08 .920E+08 .105E+09 .117E+09

Peak stress, \approx 120 MPa, is located close to the 0 field. At $B \ge 6$ T, the load is comfortably < 100 MPa

An inter-grade insulation layer, 2 mm thick reduces high stress in "misalignment" zone between high and middle field layers. The layer/turn transition is moved at the heads. protected by the staggering spacers

Racetrack design (P Bruzzone et al. CRPP)

Final assessment: Rutherford cable, racetrack winding

→ High peak field in the winding (~14 T?) still to be optimized in head regions (>14 T?)

- Rutherford cable stability remains a major issue for such design
- → The advantages brought by the simplified winding of a planar, racetrack coil not sufficient to balance the uncertainties in cable performances

Final assessment: Cable In Conduit, racetrack winding

→ Massive and expensive (cabling lengths > 2 km, stored energy ~33 MJ) due to unfavourable use of space that is made by leaving a gap between the two main coils
→ Use of a central pressure release channel complicates cabling and jacketing while improves the heat removal capability and it decreases the peak quench pressure
→ Unbalance between advantages (and disadvantages) of this solution as opposed to the use of a thicker jacket, no pressure release channel and shorter cabling lengths;

- Dipole configuration: E_{mag} ~ L (dipole), E_{mag} ~ L² (split-solenoid)
- DC field by LTS winding: Cu cable @ $RT \rightarrow P_J > 50 \text{ kW/m} \rightarrow \text{size/cooling!!}$
- AC field by Cu winding: Rl² ~ 0.5 kW (~P_{AC}@nτ~100ms,f~5Hz)
- Fe-Yoke: lower A-turns & main structural element to react horizontal forces
- Outer cylinder: pre-loading and mould for final impregnation

DC WINDING

- Saddle-shaped coils (winding studies \rightarrow MT-19)
- Double layer-winding \rightarrow Good conductor/cable grading (length <150m)
- Inter-turn voltage <50 V → No kapton barrier, wind, react & impregnate
- CICC w/o central channel \rightarrow Good stability, well-known tech in fusion community
- Jacket: circular steel pipe butt-welded & compacted → Cheap, simple orb. welding

AC WINDING

• Saddle coil rotated by 90 deg, Cu strand ~15mm² (~95 turns,350 A each)

YOKE

 Low carbon steel (→LHC) laminated sheets in 2 halves kept at ground potential →Low reluctance flux return path reduces A-turns, stiff mechanical structure

OUTER CYLINDER

- 316 LN steel sheet with longitudinal weld
 - →Easy assembly, Yoke locking at cool-down due to different COEs
 - →Good mechanical/thermal contact with yoke, cooling by supercritical He flow
 - →Ground potential anchor, last impregnation mould (→TFMC)

Electro-magnetic analysis

13

13.4 T

(in Fel

DIST

2

3

Operating current	(kA)	17.2	
Central magnetic field	(T)	12.5	
Stored magnetic energy	(MJ)	16.1	
Iron yoke outer diameter	(mm)	1200	
Outer cylinder thickness	(mm)	35	
Total CIC conductor length	(m)	1683	
SC strand weigth	(kg)	486	
CU strand weigth	(kg)	418	
Total assembly weigth	(ton)	~22	
Helium flow in DC winding	(g/s)	8.5	
Inlet He temperature	(K)	4.5	
Inlet He pressure	(bar)	10.0	
Discharge peak voltage	(kV)	2.0	
Discharge time	(s)	0.9	
Cable types (cu strand #, sc strand #)	(3+0)x3x (2+1)x3x	4x4=144- 4x4=96+	+0=144 (HF1) 48=144 (HF2)

 $\{1x(2+1)+2x(1+2)\}x3x4=48+60=108$ (LF2)

23

	Unit	HF1	HF2	LF1	LF2A	LF2B	LF2C	LF2D
Peak magnetic field	(T)	12.71	10.97	9.29	7.38	6.37	5.47	4.84
Current sharing temperature	(K)	6.24	6.87	7.22	8.27	9.07	9.77	10.25
Hot spot temperature	(K)	159	94	191	147	138	129	122
Void fraction	(%)	32	33	30	30	30	30	30
Insulation thickness	(mm)	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Jacket thickness	(mm)	1.60	1.60	1.75	1.75	1.75	1.75	1.75
Insulated conductor width	(mm)	11.50	11.50	14.30	14.30	14.30	14.30	14.30
Insulated conductor height	(mm)	22.20	22.20	14.30	14.30	14.30	14.30	14.30
Insulation area	(mm2)	60	60	54	54	54	54	54
Jacket area	(mm2)	81	81	69	69	69	69	69
Cable space area	(mm2)	114	114	82	82	82	82	82
Helium flow area	(mm2)	37	37	24	24	24	24	24
Number of non-cu strands		144	96	60	48	48	48	48
Number of cu strands		0	48	48	60	60	60	60
Non-cu area	(mm2)	39	26	16	13	13	13	13
Copper area	(mm2)	39	51	42	45	45	45	45
Conductors unit length	(m)	70.8	80.7	130.0	135.0	140.0	145.0	140.5
SC strand weigth	(kg)	95	72	72	60	62	64	62
CU strand weigth	(kg)	0	37	60	77	80	83	81
Wetted perimeter	(m)	0.31	0.31	0.23	0.23	0.23	0.23	0.23
Hydraulic diameter	(mm)	0.48	0.49	0.42	0.42	0.42	0.42	0.42
Mass flow	(g/s)	2.35	2.16	0.93	0.87	0.83	0.80	0.80
Power/channel to reach Tcs@outlet	(W)	16.0	25.9	15.1	22.7	26.9	30.4	33.5
Outlet He temperature	(K)	6.1	6.8	7.2	8.3	9.1	9.8	10.3

Final assessment: Cable in Conduit, saddle winding, cold bore

→This design solution provides a balanced trade off of cost and performance, affordable manufacturing risks and need of limited R&D

→ It has been selected for the engineering design phase and dipole call for tender

MAGNET R&D AND MANUFACTURING

HF1 conductor tests

LF2 conductor tests

AC COILS & TEST WELL

DC COILS MANUFACTURING

WINDING LINE

18000

DUMMY DC COIL WINDING: SPRING BACK & CLAMPING

DUMMY DC COIL WINDING: SPRING BACK & CLAMPING

After RHT (Dec. 08) & clamped removed.... (1) Sever damages to the turn insulation (2) Large misalignments in the joint region

ASSEMBLY SEQUENCE

DUMMY ASSEMBLY FINAL IMPREGNATION

EDIPO DC COILS WINDING: USE OF BENDING INSERTS

EDIPO pole#1 dc coil

- Many tests carried out to find the best solution to over-bend the conductor
- Bending tools are qualified by a pre-test before staring winding a new layer
- 10 out of 14 layers completed, coil width deviations <10 mm

DC COILS WINDING: GEOMETRICAL SURVEY

Winding pack width deviation from reference

Winding pack height deviation from reference

INTER-LAYER JOINTS

Manufacturing cycle

- •Bend conductor ends
- •Cut Jacket by oscillating grinder (limit stop)
- •Etch Chromium coating
- •Trim sub cables and adjust
- •Place of U-bent copper stripes
- •Place U-shaped joint box and weld to jacket
- •Flip copper stripes over
- •Place joint box lid
- Compress <20% void fraction and weld

INTER-LAYER JOINTS

DE-SIZING AND RHT

DC COILS REACTION HEAT TREATMENT

DC COILS REACTION HEAT TREATMENT

DC COILS RHT: POLE 1 640 C PLATEAU

EDIPO DC COILS RHT: POLE 2 640 C PLATEAU

DC COILS IMPREGNATION

DC COILS IMPREGNATION POLE 1

DC COILS IMPREGNATION POLE 2

DC COILS PRIOR TO POLE 1 FAULT DETECTION

-01

DC COILS-YOKE ASSEMBLY

25/01/2010

09/02/2011

DC COILS-YOKE TRANSPORT

ERGY

DC COILS-YOKE AND OUTER

DC COILS-YOKE AND OUTER

04/03/2011

ERGY

Ξ.

ACCEPTANCE TESTS AND REPAIR WORK

DC COILS PRIOR TO POLE 1 FAULT DETECTION

-01

DC COILS ELECTRICAL TEST

Pole 1 (28/04/2010) Pole 2 (07/07/2010)

DC COIL POLE 1 FAULT SEARCH (Aug.-Oct. 2010)

EDIPO Interface Meeting F4E/PSI-CRPP/BNG January 26, 2011 BABCOCK NOELL

· DC coil 1 fault search 0/2010

DC COIL POLE 1 FAULT REPAIR (Oct.-Nov. 2010)

DC coil 1 repair impregnation in 4 steps

EDIPO

Step 1: impregnation of slot using evacuated resin

DC COIL POLE 1 FAULT REPAIR (Oct.-Nov. 2010)

EDIPO

Interface Meeting F4E/PSI-CRPP/BNG January 26, 2011

- DC coil 1 repair impregnation in 4 steps
- Step 2: impregnation of grooves between joint tails using evacuated resin

DC COILS POST-REPAIR ELECTRICAL TESTS

EDIPO

Interface Meeting F4E/PSI-CRPP/BNG January 26, 2011

	Pole 1	Pole 2		
DC Resistance / mΩ	333	325		
Inductance by frequency sweep				
L @ 50 Hz / mH	41.10	41.12		
L @ 100 Hz / mH	40.71	40.43		
L @ 500 Hz / mH	39.12	38.04		
L @ 1000 Hz / mH	37.83	36.32		
Inductance with RCL meter				
L @ 50 Hz / mH	40.43	40.02		
L @ 100 Hz / mH	39.93	39.51		
L @ 500 Hz / mH	38.47	37.30		
L @ 1000 Hz / mH	37.38	35.77		
Inductance and eigenfrequency in pulse discharge test				
	36.32 mH @ 591 Hz	37.12 mH @ 584 Hz		

DC COILS ELECTRICAL TEST

Pole 1 (17/12/2010) Pole 2 (07/07/2010)

DC COILS ELECTRICAL TEST

Pole 1

Pole 2

FINAL ACCEPTANCE TESTS

- 1. The last manufacturing step was completed on April 8th 2011 with the final assembly impregnation and curing
- 2. Over the next month the assembly has undergone successfully the final acceptance tests
 - ✓ Paschen high voltage tests (AC/DC coils)
 - Resistance/inductance/impulse electrical tests (AC/DC coils)
 - Leak tests (AC/DC coils + cylinder cooling circuit)
 - ✓ Flow tests (AC/DC coils + cylinder cooling circuit)
 - ✓ Sensors check (8 Strain Gauges, 12 T-sensors)
 - ✓ Final geometrical survey by laser scan
- 3. Dispatched to CRPP@PSI on 13/5/11
- 4. Flow tests and sensors checks repeated (ok)
- 5. Installation on going
- 6. Commissioning expected in 2012

HISTORY AND OUTLOOK

Original sched	ginal schedule Delivery date: March 2008		
Jan.05-Feb. 06	design, C4Ts for strand/conductor/magnet/facility		
Feb.06-Jul. 06	→conductors qualification (CRPP)		
Feb.06-Sep.07	→magnet fabrication (BNG)		
Oct.07-Mar. 08	magnet installation & commissioning at CRPP		
●[™]July 06	→	HF+LF conductors qualification failure	
1 st Revised scl	hedule	New delivery date: June 2010	
Aug.06-Jun.08	re-design, conductors re-qualification, negotiations		
December 09	Magnet ready for dispatching		
		Winding process qualification failure	
2 nd Revised sc	hedule	New delivery date: June 2011	
Jan.09-Aug. 09	new winding process qualification		
Aug.09-Jul. 10	both poles completed, electrical tests on-going (on track)		
Aug.10-Nov.10	magnet assembly, final impregnation, final acceptance tests		
Dec.10-Jun. 11	ec.10-Jun. 11		

HISTORY AND OUTLOOK

May 11

April 2012

2012-2013(?)

3rd Revised schedule

Turn insulation failure

New delivery date: June 2013 (?)

- Aug.10-Dec.10 → Fault localization and repair
- Jan. 11-Apr. 11 -> Final cold mass assembly and impregnation
 - →Final acceptance tests
- 13 May 2011 → Dispatching to CRPP/PSI
 - →Complete installation in SULTAN hall
 - →Final facility commissioning

CONCLUSIONS

- EDIPO project aims to build a 12.5 T dipole with CIC Nb₃Sn conductors wound in a pair of saddle shaped coils to test sc samples with currents up to I~ 100 kA in a clear bore of ~10 x 15 cm²
- Although the overall budget (EC contribution) is within its 2006 allocation, the original project schedule has been disrupted by <u>3 major problems</u>:
 - (1) delayed qualification of both Nb₃Sn CIC
 - (2) delayed qualification of winding process
 - (3) turn insulation repair
- All problems have been fixed and now the EDIPO magnet is completed
- Final commissioning is delayed by conflict to access SULTAN hall and manpower whose priority are set to test ITER samples in the existing SULTAN facility

LESSONS LEARNED

1. CONDUCTORS

- Square shaped conductors maximize compactness (J_{ENG}) but have lead to poor (unexpected) NbSn cable performances; high aspect ratios show higher Tcs performances and robustness to cyclic loads. Longer twist pitches and lower void fraction improve performances and resistance to cyclic degradation;
- Pull-through and compaction jacketing time and cost effective. Beware of additional jacket cold-work

1. WINDING

- Pull-and-wind method for (steel jacketed, thick wall) CICC doesn't work with multiple radii of curvature, tight bents and many layers. Cold work during compaction leads to remarkably high yield strength. To grant geometrical compliance too large clamping pressure needs to be applied (insulation damages, impregnation hydraulic impedance, ...).
- Its apparent attractiveness (and some manufacturing experience by main contractor) has been deceiving leading to a rushed submission of a cheap technical offer that has lead to under-estimation of the difficulties and associated technical risks by the proposed winding process (→long and painful resolution!)

LESSONS LEARNED

PROJECT MANAGEMENT

- 1. <u>Insufficient critical challenging of contractor's choice by EC/EFDA has lead to a de-</u> facto endorsement of pull-and-wind method. Eventually EFDA has <u>imposed</u> its view (pre-bend-and wind method) with substantial delays that have lead to costs overrun by the contractor (!)
- 2. <u>Insufficient critical supervision of specific duties assigned to contractor such as</u> electrical tests. More modelling of electrical system and verification of electrical tests findings were needed (lack of manpower for technical monitoring?)
- 3. Customers of high tech projects need to follow-up with proper manpower the tasks to be carried out by industry (→simulate/test and check!)
- 4. All problems encountered have been of essential technical nature and their resolution was based on technical improvements of present processes. Delicate balance need to be stricken from both customer as well as contractor side to assign proper managerial responsibilities to technical people

BACK-UP SLIDES

BUDGET

Budget Present (2010): EC contribution=4.52 M€ Original (2006): EC contribution=4.56 M€

EC Contribution = 4.5 MEuro

- Strand
- Conductor
- Magnet construction
- Conductor qualification
- Dipole facility

EDIPO sensors

OUTER CYLINDER(S)

- Helical cooling tubes welded
- Final machining completed
- Spiralling tube welded on bottom flange

HTS CURRENT LEADS (CRPP)

HTS CLs successfully tested up to I~18 kA

Heat leak (conduction): $\approx 5.5 \text{ W at } T_{HTS}^{W} = 83 \text{ K}$ Nominal op. conditions: I = 17 kA dm/dt = 1.9 g/s $T_{HTS}^{W} = 83 \text{ K}$ $T_{He}^{out} \approx 263 \text{ K}$ $U_{Hex} \approx 97 \text{ mV}$ Contact resistances: $R_{wm} \approx 10 \text{ n}\Omega$ (83 K) $R_{cm} \approx 3.3 \text{ n}\Omega$ (17 kA)

Rainer Wesche, CRPP

......

HTS CL T_{cs} EXPERIMENTS

Rainer Wesche, CRPP

HTCL T_{cs} EXPERIMENTS

Rainer Wesche, CRPP

Current (kA)

STEADY STATE MASS FLOW

Rainer Wesche, CRPP

Mass flow rate (g/s)

STEADY STATE TEMPERATURE PROFILE

Good agreement of measured and calculated temperature profile

Rainer Wesche, CRPP

By means of a heater the He inlet temperature is increased until the HTS module quenches.

Voltage versus temperature curves for a 17 kA run.

For current leads, T_{cs} can not be defined in the usual way ($E = 1 \mu V/cm$) because of the existing temperature gradient.

Therefore, use of a voltage criterion to define T_{cs} .

LOSS OF FLOW TEST EXPERIMENT (/ = 17 KA)

Rainer Wesche, CRPP

Mass flow rate (g/s)

H: H'

Time [s]

LOSS OF FLOW TEST EXPERIMENT (/ = 17 KA)

=:{H

Rainer Wesche, CRPP

bei Stapel 34 auf Isolierung

18KA HT-SL STROMZUFUEHRUNG INSTRUM. TEST VILLIGEN 0-50020.21.1848

Saddle coils design (EFDA, CIEMAT, ELYTT)

Operating current	17 kA
Central magnetic field	12.5 T
Stored magnetic energy	~16 MJ
Total height (feet →up. flange)	~3 m
Total assembly weight	~20 ton
Iron yoke/steel cylinder weight	11.3 t/3.5 t
Total conductor length	1.69 km
SC strand weight	490 kg
CU strand weight	420 kg
Helium flow in DC winding	~ 8 g/s
Inlet temperature	4.50 K
I/O pressure (int. re-cooling)	10/3.5 bar
Discharge voltage	2 kV
Discharge time	~1 s

HF1 conductor tests

LF2 conductor tests

INTER-LAYER JOINTS

FUSION FOR ENERGY

•The first qualification sample achieved R~5 n Ω (expected ~1 n Ω)

 Reason was found in too weak joint box design + insufficient supporting during compression→Ubox opened and void fraction increased

 In second sample the supporting was improved and the joint box design was changed from welded sheets to a machined block.

Manufacture of qualification sample 1st attempt

INTER-LAYER JOINTS

