

Status task 2.2: Thermal studies

Bertrand Baudouy, Slawek Pietrowicz

CEA Saclay Irfu, SACM 91191 Gif-sur-Yvette Cedex, France

> bertrand.baudouy@cea.fr slawomir.pietrowicz@cea.fr

▫Experimental thermal characterization of the electrical insulations

- ◦Status on Saclay's work
- ◦Status on PWR 's work

□ He II modeling

- ◦Simplified two-fluid model
- ◦Implementation in Ansys CFX

□ Fresca 2 thermal model

- ◦Steady-state results
- ◦Transient results

\Box He II measurement : thermal conductivity and Kapitza resistance

- ◦Tri-functional epoxy (TGPAP-DETDA) with S-glass fiber
	- − ³ samples tests (three thicknesses) from 1.6 ^K to 2.1 ^K
- ◦Sample Cyanate ester mix with S-glass fiber

Institut de recherche
sur les lois fondamentales
de l'Univers

− ³ samples tests (three thicknesses) from 1.6 ^K to 2.1 ^K

TGPAP-DETDA RAL production

Thermal Characterization @ Saclay

▫Thermal conductivity

- ◦Tri-functional epoxy (TGPAP-DETDA)
- ◦Cyanate ester epoxy mix

[1] S. Pietrowicz^{et} al. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature accepted for publication in Cryogenics

[2] Baudouy B., Polinski J., Thermal conductivity and Kapitza resistance of epoxy resin fiberglass tape at superfluid helium temperature, Cryogenics 2009, 49, 138-143

[3] Crycomp, 3.06 version, Florence (SC, USA): Cryodata Inc.

[4] Baudouy B., Kapitza resistance and thermal conductivity of Kapton in superfluid helium, Cryogenics 2003; 43 (12): 667-672.

Thermal characterization @ Saclay

▫Kapitza resistance

- ◦Tri-functional epoxy (TGPAP-DETDA)
- ◦Cyanate ester epoxy mix

[5] Iwamoto A., Maekawa R., Mito T., Kapitza conductance of an oxidized copper surface in saturated He II. Cryogenics 2001, 41, 367-371

PWR He II cryostat status (© J. Polinski)

- Instrumentation is installed
- Connection of instrumentation to DAQ system is done
- LabView program for cryostat operation is done
- 4 thickness of unirradiated 71 Mix samples are ready for thermal test
- During the first cool down with LHe some technical problems occurred
	- The manual shut-off valve need to be exchanged
	- Restart of measurement expected in mid of Dec 2011

Top view of the cryostat with wiring

He II modeling

 \Box The momentum equations for the superfluid component is simplified to the form [6]

$$
s\nabla T = -A\rho_n|u_n - u_s|^2(u_n - u_s)
$$

(the thermomechanical effect term and the Gorter-Mellink mutual friction term are larger than the other)

Superfluid component:

$$
u_s = u - \frac{\rho_n}{\rho} (u_n - u_s) = u + \left(\frac{\rho_n^3 s}{A \rho^3 \rho_n |\nabla T|^2}\right)^{1/3} \nabla T
$$

Normal component:

$$
u_n = u + \frac{\rho_s}{\rho} (u_n - u_s) = u - \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2}\right)^{1/3} \nabla T
$$

Momentum equation

$$
\rho \frac{\partial u}{\partial \tau} = -\rho (u \cdot \nabla) u - \nabla p - \nabla \cdot \left[\frac{\rho_n \rho_s}{\rho} \left(\frac{s}{A \rho_n |\nabla T|^2} \right)^{2/3} \nabla T \nabla T \right] + \eta \left[\nabla^2 u + \frac{1}{3} \nabla (\nabla \cdot u) - \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2} \right)^{1/3} \left\{ \nabla^2 (\nabla T) + \frac{1}{3} \nabla (\nabla \cdot \nabla) T \right\} \right] + \rho g
$$

[6] Kitamura, T. Numerical model on transient, two-dimensional flow and heat transfer in He II, Cryogenics,vol. 31, 1, 1997, p. 1-9

He II modeling

1. For He II (fluid domain)
\n
$$
\Box \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0
$$
\n
$$
\Box \rho \frac{\partial u}{\partial \tau} = -\rho (u \cdot \nabla) u - \nabla p - \nabla \cdot \left[\frac{\rho_n \rho_s}{\rho} \left(\frac{s}{A \rho_n |\nabla T|^2} \right)^{2/3} \nabla T \nabla T \right]
$$
\n
$$
+ \eta \left[\nabla^2 u + \frac{1}{3} \nabla (\nabla \cdot u) - \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2} \right)^{1/3} \left\{ \nabla^2 (\nabla T) + \frac{1}{3} \nabla (\nabla \cdot \nabla) T \right\} \right] + \rho g
$$
\n
$$
\Box \rho c_p \frac{\partial T}{\partial \tau} = -\rho c_p (u \cdot \nabla) T - \nabla \cdot \left\{ \left(\frac{1}{f(T) |\nabla T|^2} \right)^{1/3} \nabla T \right\}
$$
\n2. Insulation (solid domain)
\n
$$
\Box \rho_{solid} c_p (T) \frac{\partial T}{\partial \tau} = \left[\frac{\partial}{\partial x} \left(k(T) \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(T) \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k(T) \frac{\partial T}{\partial z} \right) \right]
$$

3. Kapitza resistance R_k as a function of temperature

Boundary conditions

on left and right – adiabatic condition on the top $-$ constant temperature on the bottom $-$ constant heat flux

on all walls $u_1 = 0$ and

$$
\frac{\partial T}{\partial n} = 0
$$

T_b=1.95 K
a=const

$$
u_{\parallel} = \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2}\right)^{1/3} (\nabla T)_{\parallel}
$$

He II modeling

Fresca 2 thermal modeling

MAGNET SPECIFICATION

- type: block coil, 156 conductors in one pole;
- free aperture: 100 mm;
- total length: 1600 mm;
- outside diameter: 1030 mm;
- magnetic field: 13 T;

OPERATING PARAMETERS

- coolant: superfluid and/or saturated helium;
- temperature: 1.9 K and/or 4.2 K;
- temperature operating margin: 5.8 K at 1.9 K and 3.5 K at 4.2 K

tut de recherche sur les lois fondamentales

Fresca 2 thermal modeling

Assumptions

- Two types of boundary conditions:
	- 1. Kapitza resistance on walls (red lines);
	- 2. Symmetry (yellow lines);
- Thermal conductivity as function of temperature;
- Perfect contact between solid elements;
- Calculations are carried out for CUDI model (AC loss due to ISCC losses, nonhomogenous spreads)
- He II between yoke and pad laminations $(200 \mu m)$

Fresca 2 thermal modeling – Steady State

The distribution map of temperature in the magnet (the plane is located on symmetry of helium side)

S. Pietrowicz, B. Baudouy, Thermal design of an Nb3Sn high field accelerator magnet, CEC 2011, Spokane, USA, accepted for publication

S. Pietrowicz, B. Baudouy, Numerical study of the thermal behavior of a $Nb₃Sn$ high field magnet in He II presented at CHATS October 2011 CERN

[7] de Rapper, W. M., "Estimation of AC loss due to ISCC losses in the HFM conductor and coil", CERN TE-Note-2010-004, 2010;

▫Thermal test of electrical insulations

- ◦Tri-functional (TGPAP-DETDA) and cyanate ester with S-glass fiber done and analyzed
- ◦*Tests to be started in mid Dec. 2011 for the RAL Mix 71 and RAL Mix 237 (PWR)*
- ◦*Test for the irradiated samples in 2012*

 \Box A He II simplified model is running under ANSYS CFX Software

- ◦Steady-state and transient calculation implementations
- ◦Model benchmarked against analytical solution within few percents
- ◦*Improvement of the model during 2012*
- ▫Thermal modeling of Fresca 2
	- ◦∆T=193 mK for the AC losses given by the CUDI model [7]
	- ◦The transient code is operational
	- ◦*Calculations on newer versions in 2012*