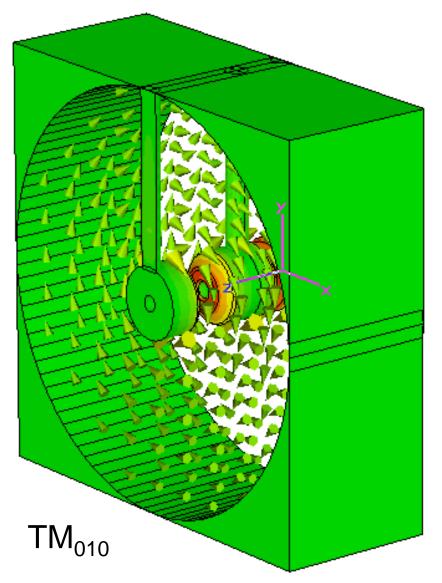
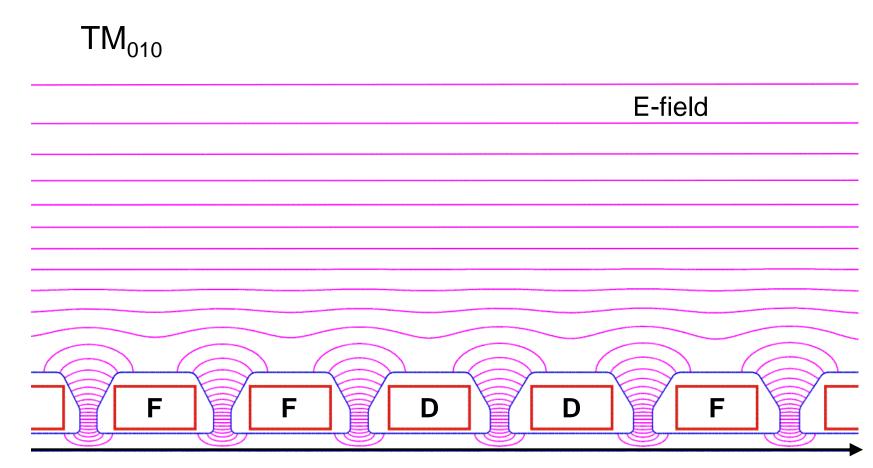


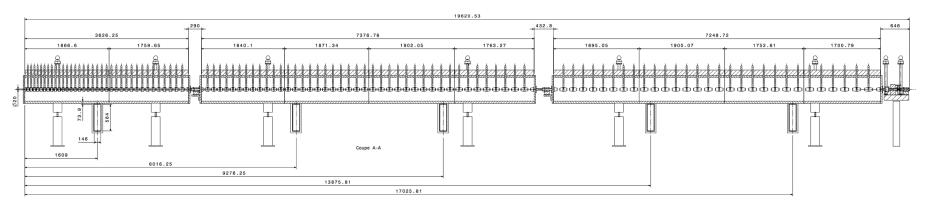
Linac4 Drift Tube Linac Overview

Suitbert Ramberger, CERN, AB-RF-LR

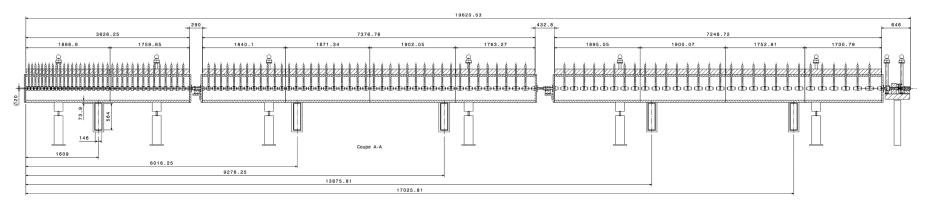

- Physics
 - RF Resonator in Vacuum
 - Acceleration by Electric Fields
- Design
 - Interdependencies
 - Intricacies
 - Iterations
- Linac4 DTL
 - General Parameters
 - Parameters by Tank

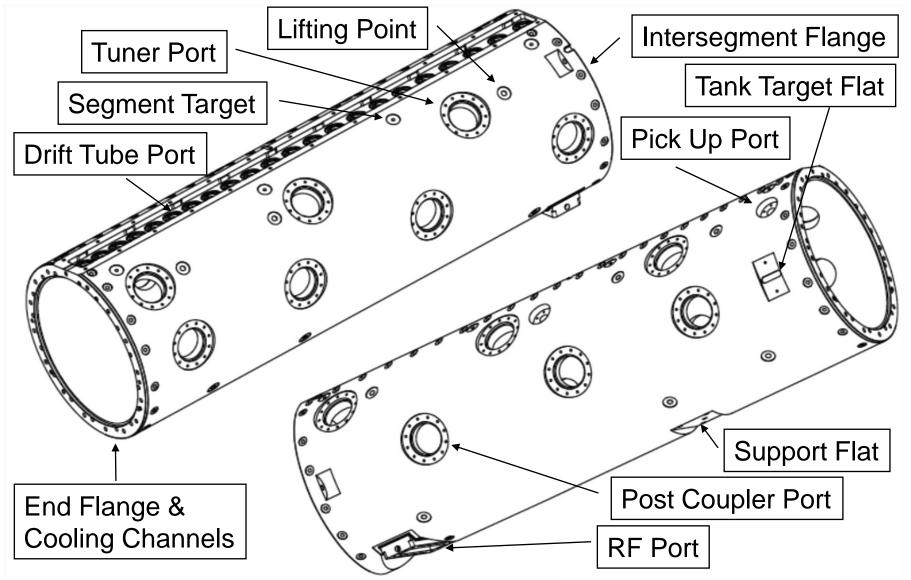
Alvarez Drift Tube Linac





Beam


- Every drift tube adjusted to the velocity of the particles
 - Every drift tube is different in dimensions and shape
 - Every cavity is different in number of drift tubes per unit length
- Electro-magnetic design needs to fit with beam dynamics design
 - Longitudinal: synchronous phase & accelerating gradient
 - Transverse: focusing scheme & magnetic gradients
 - Phase matching at end of tank
- Cavity length needs to fit with available power


- Design must be manufacturable
 - Magnets fit drift tubes
 - Tanks split into segments of suitable length
 - Splitting requires space
 - Post-couplers and other ancillaries need to fit with splitting

DTL Segment T1S1

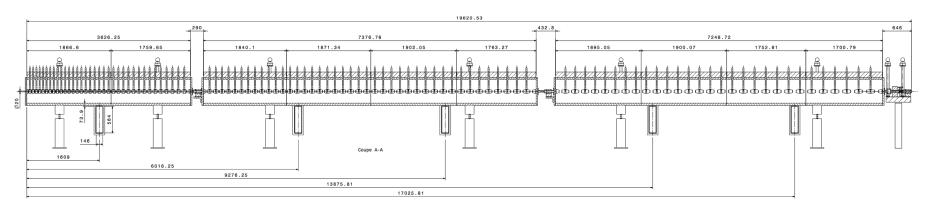
You will be presented with a <u>final</u> design today **but** It is a tedious process to arrive at <u>your</u> optimum!

An example:

- Phase matching requires additional RF power
- If power is not available, tank needs to be made shorter
 - Changing number of cells interferes
 - with post-coupler scheme
 - with focusing scheme in two tanks!
- •Or the gradient needs to be lowered:
 - Lower gradient more cells, smaller cell lengths
 - Maximum segment size fulfilled?
 - Sufficient space for splitting available?

4

DTL design is an iterative process:


- Definition of principal cell dimensions
 - For optimum gradient
 - Sufficient magnet volume
 - Correct post-coupler length
- Find optimum output energy
 - Define average gradient & number of tanks
 - Keep power margin for additional losses and matching
- Discretize in tanks
 - Check for post-coupler scheme
 - Adjust gradient between tanks
- Implement mechanical design
 - Check compatibility & try options with proper matching

DTL design parameters:

- DTL from **3 50 MeV** with 3 cavities and 1 LEP and 2 new klystrons
- Klystron output power at cavity port **1 MW** (Tank1) and **2 MW** (Tank2&3)
- Accelerating field at ~3.2 MV/m
- Peak electric field of **1.6 Kilpatrick** lowered to 1.2 Kilp. over the first cells
- PMQs in vacuum
- Self supporting steel cylinders of **50 mm** thickness
- Maximum segment length of 2 m

Production design:

- Parameters compatible with mechanical realization
- Production drawings are ready and manufacturing started

Parameter \ Cavity	1	2	3
Cells per cavity	39	42	30
Accelerating field	3.1 MV/m	3.3 MV/m	3.3 MV/m
Maximum surface field	1.5 Kilp.	1.4 Kilp.	1.45 Kilp.
Synchronous phase	-35 to -24 deg	-24 deg	-24 deg
RF peak power per cavity	1.00 MW	2.03 MW	1.98 MW
Quadrupole length	45 mm	80 mm	80 mm
Flat Size	11 mm	7 mm	5 mm
Number of sections	2	4	4
Length per cavity	3.8958 m	7.3406 m	7.2508 m
Beam output power	11.88 MeV	31.45 MeV	50.14 MeV

Today:

- Beam dynamics and RF design
 - Coffee break
- Mechanical design and ancillaries
 - Lunch break
- PMQs, prototype testing, vacuum
 - Coffee break
- ESS Bilbao and INFN LNL

Tomorrow:

- Visit to workshops:
 - Welding, Assembly, Linac4 Bd.

