

Linac4 Drift Tube Linac RF Design

Suitbert Ramberger, CERN, AB-RF-LR

4

- Introduction
 - Design Parameters & Constraints
 - Peak Fields
- Consistent RF Design Part 1
 - Principle of Consistent RF Design
 - Linac4 Parameters & Comparison
 - Post Coupler Distribution & Power Coupler
 - Tuning Range & Static Design Compensation
- Consistent RF Design Part 2
 - Compensation of Field Tilts
 - Power Coupler Compensation
 - Position of Pick-Ups, Power Couplers & Pumping Grids

DTL design parameters:

- DTL from **3 50 MeV** with 3 cavities and 1 LEP and 2 new klystrons
- Klystron output power at cavity port **1 MW** (Tank1) and **2 MW** (Tank2&3)
- Accelerating field at ~3.2 MV/m
- Peak electric field of **1.6 Kilpatrick** lowered to 1.2 Kilp. over the first cells
- PMQs in vacuum
- Self supporting steel cylinders of 50 mm thickness
- Maximum segment length of 2 m

DTL designs might have problems with RF breakdown in the first cells

• Origin of breakdowns unclear but:

- C.S. Taylor in Lapostolle/Septier 1970 citing MURA 1964:

"Sparking is reported to be an occasional problem of the 1.7 MeV/m machines while at 1.5 MeV/m in long tanks it is apparently quite rare."

RF breakdown:

- electric discharges following field emission
- Kilpatrick limit $E_{K} = 18.4 \text{ MV/m} @ 352.2 \text{ MHz}$
- Bravery factor for DTL: **1.7 Kilpatrick**
- Enhanced by magnetic fields \perp to surface

Role of magnetic fields in RF breakdown?

• Recent study by Fermilab in MuCool program (A. Bross MICE CM17):

Peak Surface Field

Trade-off E_{max} versus gap length, first cell:

- E_{max} reduction: from 1.7 Kilpatrick to **1.2 Kilpatrick**
- Gap length increase: from 8.5 mm to 13 mm
- Tuning by variation of face angle
- Energy gain $E_0Tcos(\phi_s)$ decrease: -4.1%
- Beam energy decrease, first tank: -1%

Drift Tube Body

Consistent cell by cell RF design:

- A cell is designed with the design parameters:
 - Cell length, gap length, face angle
- With the following objectives:
 - The cell is resonant at the design frequency
 - The cell length is consistent with the particle speed $(I=\beta\cdot\lambda)$ & RF phase
 - The effective shunt impedance is maximum (within constraints)
 - The constraints are:
 - The peak field
 - The feasible range of geometrical dimensions
- Tracing the synchronous particle, we find a new energy & RF phase.
- Design the next cell \uparrow until:
 - The design energy is reached or
 - The available klystron power is used up

Production design:

- Parameters compatible with mechanical realization
- Production drawings are ready and manufacturing started

Parameter \ Cavity	1	2	3	
Cells per cavity	39	42	30	
Accelerating field	3.1 MV/m	3.3 MV/m	n 3.3 MV/m	
Maximum surface field	1.5 Kilp.	1.4 Kilp.	1.45 Kilp.	
Synchronous phase	-35 to -24 deg	-24 deg	-24 deg	
RF peak power per cavity	1.00 MW	2.03 MW	1.98 MW	
Quadrupole length	45 mm	80 mm	80 mm	
Flat Size	11 mm	7 mm	5 mm	
Number of sections	2	4	4	
Length per cavity	3.8958 m	7.3406 m	7.2508 m	
Beam output power	11.88 MeV	31.45 MeV	50.14 MeV	

Comparison:

- Linac4 DTL more compact with constant high E₀
- Linac2 starts from a lower beam energy
- SNS uses ramped E₀ in tank1 to adiabatically capture the beam longitudinally
- J-PARC uses constant but lower E₀ with 1.3 Kilpatrick

RF stability:

• Tank lengths in λ similar to Linac2 and SNS and lower than at J-PARC

	E ₀	freq	Eo	E _{max}	W_{in}	ramp	tank lengths
	MV/m	MHz	Kilp.	Kilp.	MeV	%	λ
Linac2	1.79–2.16	202.56	0.121-0.146	0.63 – 0.85	0.75	21	4.7/8.8/9.0
SNS	1.13 – 3.77	402.5	0.058-0.194	0.47 – 1.3	2.5	62	5.6/8.1/8.5
J-PARC	2.5/2.7/2.9	324	0.140-0.163	1.3	3.0	0	10.7/10.2/7.9
Linac4	3.1 – 3.3	352.2	0.179	1.2 – 1.5	3.0	0	3.9/7.3/7.3

Post Coupler Distribution

Post Coupler Circuit Model:

- The optimum post-coupler length can be deduced from frequency measurements
- Tank1: 1 PC per 3 DTs
- Tank2: 1 PC per 2 DTs
- Tank3: 1 PC per 1 DTs

F. Grespan 11

Power Coupler Simulation:

- Coupling factor
- Frequency Error
- Power dissipation

Cell 22-23	MWS	Superfish	HFSS
freq. [MHz] w/o WG	350.977	353.750	353.600
freq. [MHz] with WG	347.780	-	350.600
$\Delta \mathbf{f} [\mathbf{MHz}]$	3.197	-	3.000
∆f*l [kHz*m]	644	-	604

12

Tuning:

- The static tuners / plungers compensate static manufacturing errors
- The movable tuners compensate thermal expansion

Example: Drift Tube 1 of Tank1

			Tolerance		Static Error		Temper.	Thermal	Dynamic
Туре	Nominal	Sensitivity	Min	Max	Min	Max	Rise SPL	Expansion	Error SPL
	mm	MHz/m	mm	mm	kHz	kHz	К	mm	kHz
shift_DT	0	-10.50	-0.15	0.15	1.575	-1.575	0	0.000	0
gap	11.8001	5905.10	-0.025	0.025	-147.628	147.628	50	-0.047	-277.530
len_cell	68.5613	4412.60	-0.01	0.01	-44.126	44.126	10	0.012	53.912
alpha		4525.50	-0.03	0.03	-135.765	135.765	0	0.000	0
d_DT	90	-723.40	-0.034	-0.012	24.596	8.681	50	0.075	-53.908
d_tank	520	-445.00	-0.035	0.09	15.575	-40.050	10	0.093	-41.235
stem	29	139.93	-0.025	0.025	-3.498	3.498	20	0.010	1.344
Sum					-363.961	372.762			-317.417
kHz*m					-24.954	25.557			-21.763

Provide sufficient tuning range:

- Tolerances and thermal expansion define the maximum frequency error
- A sufficient number of tuners compensates the frequency error

Tank	No Cells	Length	Max Cell- Effect	Max Freq Error	Max Tuner Effect	Min No Tuners	Nom. Comp.	Tot. No Tuners	No Tuners
		m	kHz*m	kHz	kHz*m	m⁻¹	kHz		m⁻¹
1	39	3.9	80	800	450	1.8	250	12	3.1
2	42	7.3	85	490	450	1.1	120	18	2.5
3	30	7.3	90	370	450	0.9	90	15	2.1

Movable tuners:

- At least 1 better 2 for tank1
- 2 for tank2 and tank3

Static Design Compensation

In simulations, a modified cavity diameter compensates

- Tuner Default Position
- Post couplers
- Simulation Errors (Meshing)

	Unit	Tank1	Tank2	Tank3
1/3 Tuner Position	kHz*m	1800	2700	2250
Post Couplers	kHz*m	kHz*m 117 26		511
Syst. Sim. Errors	kHz*m	390	438	438
Sum	kHz*m	2307	3401	3199
D Sensitivity	MHz*m/m	-1716	-3212	-3212
Diam. Comp.	mm	-1.34	-1.059	-0.996

Consistent tank RF design:

- A tank is assembled from all cells of equal resonance frequency:
 - The resonance frequency of the tank is the same as of the cells (as long as the field distribution is the same)
 - The accelerating field increases along the tank ("tilt")
 - (and the resonance frequency in reality is slightly off)
 - The field distribution can be corrected by
 - Tuners or
 - Shifting the end-walls
 - Shifting end-walls, the remaining error gets well within $\pm 1\%$
 - The field distribution can be further corrected by
 - Post-couplers with tips or
 - Slightly retuning cells with face angles

Origin of Field Tilts:

- Each cell has:
 - Same resonance frequency
 - Same average accelerating field
 - Different dimensions
 - Different wall currents (by few percents)
- Continuity of wall currents leads to natural tilt
- Further size dependent effects:
 - Amount of discretisation error
 - Size independent manufacturing errors (e.g. weld shrinkage)

Compensation of Field Tilts:

- Re-machining of end walls before copper plating (single step)
- Adjustment of tuners + post-couplers

Cell influence of Power Coupler:

- The power coupler is installed at the center of Tank1
- The power coupler influences the accelerating fields in neighbouring cells
- Tuners can compensate the influence

19

Position of Pick-Ups:

- 5 pick-up locations in Tank1:
 - Pick-up at $\sim \frac{1}{2}$ point suppresses measurements of TM_{01n}, n odd
 - Sum of pick-ups at 1/4 & 3/4 point suppresses TM_{01n}, n odd & TM₀₁₂
 - Pick-up close to end-walls measures all TM_{01n} modes
- 9 pick-up locations in Tank2&3:
 - Pick-ups in the 1/8 points

Position of Power Couplers:

- 1 power coupler in Tank1, 2 power couplers in Tank2&3:
 - All wave-guides slightly off ½ and ¼ & ¾ point due to segmentation

Position of Pumping Grids:

- On segments that do not have power couplers:
 - 1 on Tank1, 2 each on Tank2&3

- Consistent
 - Particle Energy & Phase
 - Design Parameters & Constraints
 - Cell & Tank Design
- Manufacturable
 - Compatible with Segment & Tank Size
 - Post Coupler & Tuner Distribution
 - Cooling Circuits & Pumping Grids
- Complete
 - Tuning Range, Stabilization & Compensation
 - Power Coupler & Pick-Up Positions

