Study of drift tube linac stabilization with post couplers.

Contents

- Introduction
 - The resonant coupling
 - Post couplers in a DTL
- Post coupler study
 - Simulations
 - Equivalent circuit
 - Tuning procedure and measurements

The resonant coupling

Perturbations ($\delta C0$, $\delta L0$, δk ,...) $\rightarrow \delta \omega 0$

 $\pi/2$ mode more solid with respect to perturbations (central oscillator unexcited and the frequency located in the middle of the dispersion curve)

The resonant coupling

Accelerating mode $\leftrightarrow \pi/2$ mode less sensitive to perturbations

Coupling cells

- out beam axis
- unexcited

Accelerating cells

- on beam axis
- excited

Francesco Grespan

The resonant coupling

 dispersion curve has now 2 passbands, separated by a stopband

• cavities are tuned in order to remove the stopband: confluence point.

• only the accelerating cavity mode can be excited at the confluence point, the coupling cavity mode being forbidden because of boundary conditions

Structure	Coupling element	Mode at confluence	
Side Coupled Linac	Side cavity	π	
Multistem DTL	Stems 0		
Post Coupled DTL	Post couplers	0	
Segmented RFQ	Coupling cell	0	

Francesco Grespan

Resonant coupling for a DTL: post couplers

Resonant coupling for a DTL: post couplers

Resonant coupling for a DTL: post couplers E Field[V/m]

mode number

Post coupler study

Objectives:

- Theoretical characterization of post couplers
- Strategy to set post coupler length in a DTL

Steps:

- Simulation analysis
- Equivalent circuit for DTL
- A new procedure for post coupler setting based on equivalent circuit
- Experimental check: low power measurements and high power test

Circuital view of post couplers

3D simulations \rightarrow pattern of post coupler mode

Francesco Grespan

Circuital view of post couplers

3D simulations \rightarrow calculation of parameter values

Parameter estimation

Parameter estimation

Stems and Post Couplers

Stem modes

- RF measurements: much lower frequencies
- 3D view of stem mode magnetic field, showing weak coupling between stems and PCs

Equivalent circuit for DTL

 \rightarrow there is an optimum post coupler length...

1.04

1.03

1.02

The stabilizing post coupler condition

The optimum value of C_p for stabilization decreases as function of the capacitance C : where DTs are longer, gap PC-DT must be larger; where DTs are shorter, gap PC-DT must be smaller.

- 1. gap is too short: PCs can compensate the perturbation, but not completely;
- 2. gap is slightly larger than the stab. condition: over-compensation that changes the slope with respect to the perturbation;
- 3. gap is much larger than the stabilizing condition, the PC effect is destabilizing.

Magnetic couplings between post couplers L0/2 C0 L0/2 L0/2 C0 L0/2 Cp: Cp: Cр С

С

С

Magnetic couplings between post couplers

Matrix of the DTL equivalent circuit

Matrix of the DTL equivalent circuit

6 parameters: 2 frequencies, 4 coupling constants.

$$\begin{bmatrix} k_0 + \omega_0^2 & -k_p & -k_0 & 0 & 0 & 0 & 0 \\ -k_0 & k_p + \omega_p^2 & k_0 & k_{p1} & 0 & k_{p2} & 0 \\ -k_0 & k_p & k_0 + \omega_0^2 & -k_p & -k_0 & 0 & 0 \\ 0 & k_{p1} & -k_0 & k_p + \omega_p^2 & k_0 & k_{p1} & 0 \\ 0 & 0 & -k_0 & -k_p & k_0 + \omega_0^2 & -k_p & -k_0 \\ 0 & k_{p2} & 0 & k_{p1} & -k_0 & k_p + \omega_p^2 & k_0 \\ 0 & 0 & 0 & 0 & -k_0 & k_p + \omega_p^2 & k_0 \end{bmatrix}$$

$$\succ \omega_0, k_0$$

• constant

calculated by simulation

- functions of post coupler length
- fit from measurements

k_0 / ω_0^2	k_p/ω_0^2	k_{p1}/ω_0^2	k_{p2}/ω_0^2
2.5	0.25	0.076	-0.031

gap PC-DT = 25 mm

Procedure for post coupler length setting

Francesco Grespan

Measurement: DTL cold model

Measurements: DTL cold model

THANK YOU!