
Permanent magnet quadrupoles for the LINAC4 Drift Tube Linac design and procurement

Permanent magnet quadrupoles for LINAC4

- Majority of focusing elements are permanent quadrupoles (136 PMQ and 31 EMQs in the linac).
- 3 families :
 - 45 mm long , 22/60 inner/outer diametre to be housed in drift tubes oftank1 + tank cover
 :43pieces
 - 80 mm long , 22/60 inner/outer diametre to be housed in drift tubes tank2and3 : 70 pieces
 - 100mm long 45/124 inner/outer diametre in CCDTL intertanks (outside beam pipe): 14pieces

D.A. Swenson, E.D. Bush, Jr., R.F. Holsinger, J.J. Manca, N. Saito, and J.E. Stovall

Xth Int. Conference on High Energy Accelerators, USSR, 1977. Project PIGMI.

Magnetic Material – Alnico, BaFe, and SmCo

G=6-11 kGs/cm

No pole tips. Harmonic #6 \sim 6 %, #10 \sim 2 %, #14 \sim 0.2 %.

Stepped-pole geometry has been investigated to eliminate Harmonics #6 and #10 with the PANDIRA code by K.H. Halbach and R.F. Holsinger.

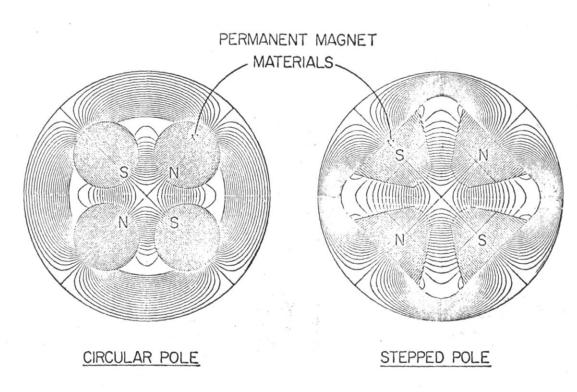


Fig. 5. Permanent magnet quadrupole lens geometries and calculated fields.

Early prototypes

February 2006

May 2006

ASTER ENTERPRISES (USA)

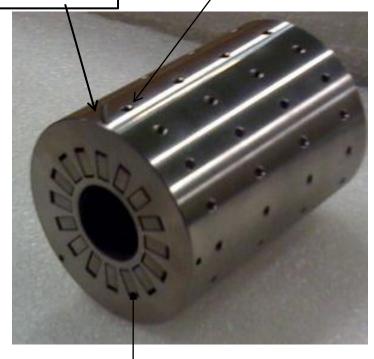
GL= 2.5 Tesla; L=45 mm; 30 pieces

May 2006

ASTER ENTERPRISES (USA) GL = 4 Tesla; L=45 mm; 16 pieces

All prototypes were within the specs

All prototypes on time and on budget,


Choice was between field quality, strength, cost.

GL=2.5 Tesla; L=45 mm; 16 pieces

PMQ for the drift tube Linac

Hole and Pin to position in drift tube

64 silver-plated screws

One PMQ installed in each Drift Tube

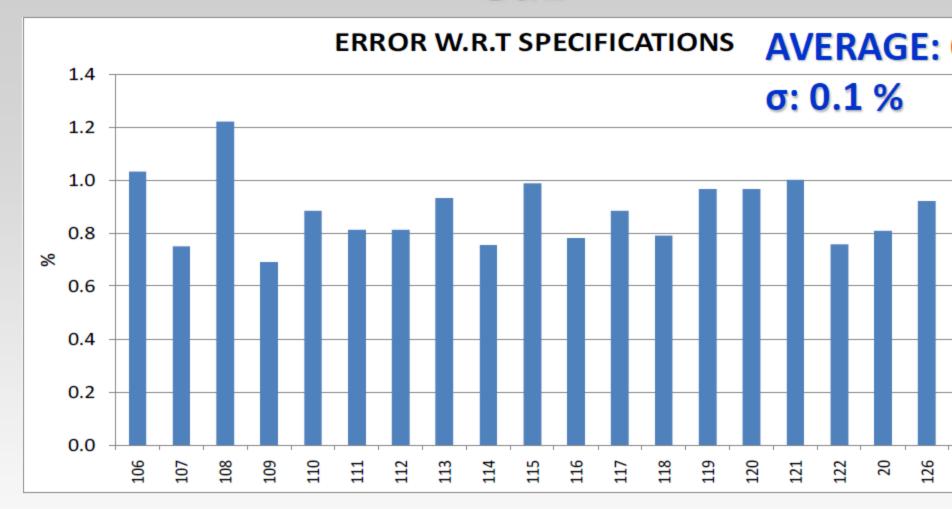
- FFDD system
- Max/Min integrated gradient= 2.4/1.2 T
- Tolerance: ±0.5% on the field, 1mrad on the roll, harmonics <0.01 at 75% radius,

Magnet Material - Samarium Cobalt (Sm₂Co₁₇)

- PM material selected to minimize field strength loss due to neutron fluence.
- Housing Material Stainless Steel (316LN)
 - Use in vacuum
 - Stable against corrosion (galvanic couple with copper)
 - Thermal expansion coefficient similar to copper
 - Low conductivity protects against accidental heating during the welding process

Installation in Drift tube

- Each PMQ will be positioned in the centre of the drift tube, oriented with a dowel pin and clamped in position by a spring washer
- The drift tube will not have a full bore tube and the end-caps, located on the PMQ, will be welded to the body of the drift tube after positioning of the PMQ.

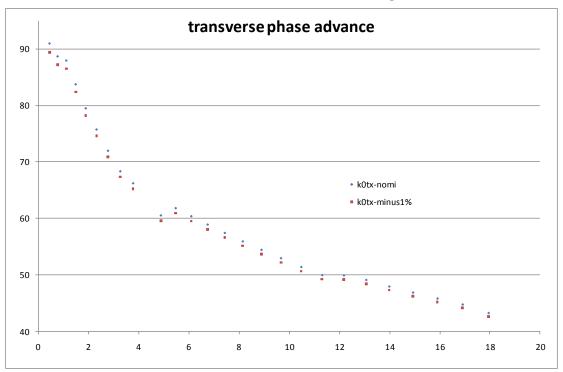

Critical specifications

	Specs for the PMQ
	Family 2: PMQ for DTL tank2 and 3
	Number of pieces: 70
	Integrated gradient (Max): 2.0 Tesla
	Integrated gradient (min): 1.2 Tesla
Mechanical tolerances, verified by EN/MME (A. Cherif)	Mechanical Length: 80 mm
	Inner diameter: 22 mm
	Outer diameter: 60 mm
Magnetic tolerances , verified by TE/MSC (M. Buzio, G. Golluccio, F. Mateos)	Gradient integral error (rms) -+ 0.5 %
	Magnetic versus geometric axis: < 0.1 mm
	Harmonic content at 7.5 mm radius: Bn/B2 for n=3,4,10:
	< 0.01
	Yaw/pitch: 2 mrad
	Roll: 1 mrad
	Machining tolerances ISO 2768-mK unless indicated in
	SPLACDTD00009
Vacuum tolerances verified by TE/VSC G. Vandoni, I. Weavers.	Outgassing rate per magnet below 4·10 ⁻⁶ mbar l s ⁻¹

45 mm

- Procurement of quadrupoles started January 2009 with ASTER (USA).
- 39 quadrupoles for tank1 drift tubes in house, last batch arrived Jan 2011
- Lesson learned
 - Galvanic couple copper-Aluminium: use 316 LN for holder material
 - Specify the vacuum requirement in terms of outgassing
 - Cross calibrate magnetic measurements

GdL

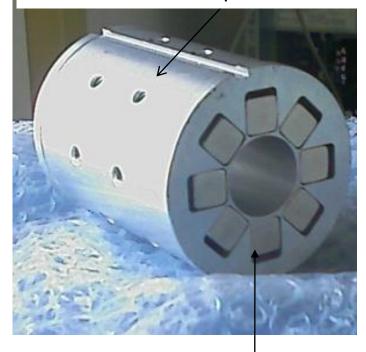


- -The integrated measured gradient is systematically 0.88 % lower than the specified values -the GdL measured by the coil after the latest calibration (reference = PMQ 121) agrees with t within the uncertainties of the 2 systems (0.2 % SSW and 0.3 % Rotating coil @ 1 σ)
- -There are no systematic discrepancies between rotating coil and SSW

Why -1% is ok.

- It is a bias on all quadrupoles, not a scatter.
- It decreases the transverse phase advance everywhere but it stays smooth and the ratio with the longitudinal has the same behaviour
- Beam can be re-matched from the MEBT
- Increase of the envelope 20-50microns, rms emitt. increase (+0.5%).

Choice of phase advance


80 mm long

- 2 prototyping campaigns
 - <u>Jan 2010 :to validate potential new companies</u> (VS, Elytt) : Elytt magnetic design validated; tolerances ok, vacuum not ok due to bad shimming material choice.
 - <u>July 2010 : to test 316LN and Titanium</u>. Machining of 316LN doesn't create a problem (screws are silverplated to avoid galling); Titanium ok but too expensive.

80 mm long PMQs

16 silver-plated screws

This is not the final quad!!!!

One PMQ installed in each Drift Tube

- FFDD system
- Max/Min integrated gradient= 2.4/1.2 T
- Tolerance: ±0.5% on the field, 1mrad on the roll, harmonics <0.01 at 75% radius,

Magnet Material - Samarium Cobalt (Sm₂Co₁₇)

- PM material selected to minimize field strength loss due to neutron fluence.
- Housing Material Stainless Steel (316LN)
 - Use in vacuum
 - Stable against corrosion (galvanic couple with copper)
 - Thermal expansion coefficient similar to copper
 - Low conductivity protects against accidental heating during the welding process

Installation in Drift tube

- Each PMO will be positioned in the centre of the drift tube, oriented with a dowel pin and clamped in position by a spring washer
- The drift tube will not have a full bore tube and the end-caps, located on the PMQ, will be welded to the body of the drift tube after positioning of the PMQ.

16 pole pieces

To be procured

- 72 "long" quadrupoles : to be produced by Elytt.
 - Sep 2011 : 16 quads (tank3)
 - Oct 2011 : 15 quads (tank3)
 - Nov 2011 : 23 quads (tank2)
 - Jan 2012 : 18 quads (tank2)
- 4 "short" quadrupoles : retune existing ones
 - Sometimes in 2012 when the intertanks are assembled
- Spares: 10 "short" + 20 "long": schedule tbd