DTL: Basic Considerations

Thanks to J. Stovall, for the help!

M. Comunian & F. Grespan

OutLine

- Design parameters
- Design Method
- Design of PMQ, Field Law, Lattice
- Beam dynamics optimization
- Example of a FODO and FFDD DTL
- Conclusion

DTL Parameters

- Particles is proton.
- Input energy of 3 MeV. (β=0.0798)
- Output energy of 50 MeV. (β=0.314)
- Frequency is 352.2 MHz.
- Current of 70 mA.
- Duty cycle 4%.
- Total peak power (SF*1.2+Beam) < 6 MW.
- Total DTL length <20 m (inter tanks space?).
- Input Transverse RMS emittance Norm. of 0.22 mmmrad. (output of RFQ+10% in the MEBT)
- Input Longitudinal RMS emittance Norm. of 0.32 mmmrad (output of RFQ).
- Input distribution Gaussian (5 sigma on size, i.e. a very large total emittance).
- Simulation Code: TraceWin with a minimum of 10^5 particles (i.e. 1.4 W for particle).
- Calculated matched input beam conditions.
- Constant PMQ gradient or Equipartitioning.
- PMQ size as Linac 4 PMQ tender.

Design method

- Maximum of 1.4 Ekp? -> limited By Moretti Criteria.
- Maximum of 2 MW power for Tanks. -> From Klystron limit.
- Maximum RF Tank length of 7-8 m? -> From RF tuning.
- Maximum PMQ field of 50-70 T/m? -> From manufacturing.
- Maximum output emittance? -> From SC Linac Acceptance.
- Maximum losses allowed? (1 W/m?) -> From radioprotection.
- Maximize effective shunt impedance? -> From Cell design and Field stabilization.
- Equipartitioned BD design? -> SNS design rule.
- Field EO ramping? -> SNS yes, CERN no.
- Lattice? FFDD(CERN)? FODO? FFODDO(SNS)? O=space for steering/BPM.
- Intertank distance? $3\beta\lambda(CERN)$? or $1\beta\lambda(SNS)$?
- Maximum Mechanical module length? ->2 m from manufacturing.

Moretti Criteria is more demanding respect to the Kilpatrick "Brave" factor

• sparking in the region of collinear B & E fields.

Figure 8. Linac4 PMQ prototype.

Sparking effects (@1.7kp) on Linac4 DTL prototype

- fit to sparking threshold at 805 MHz as a function of a dc surface magnetic field
- assume data scales with Kilpatrick Criteria
- sparking threshold believed to be a surface phenomena

Flat or Ramped Field E0?

Flat Field design and ramped design, in the ramped design the Epeak max is 1.35.

Design Summary Flat field E0

Tank	No of	Length	Wfinal	Power
	Cells	m	Mev	MW
1	76	9.16	20.83	2.047
2	27	5.49	35.96	1.955
3	20	4.98	50.19	1.977
Total	123	19.63		5.98

Design Summary Ramped field E0

Tank	No of	Length	Wfinal	Power
	Cells	m	Mev	MW
1	68	7.76	19.63	2.001
2	28	5.57	35.09	1.997
3	22	5.44	50.04	2.032
Total	118	18.78		6.03

The idea is to model the longitudinal behavior of the field distribution with the goal of determining the dimensions of perturbations applied to the tank end walls that will pre-set the longitudinal field distribution to approximately that of the design. Shapes of the individual drift tubes are the same as the design except for the face angles.

The ramped solution is better in term of performance.

DTL Example

- FODO Lattice:
 - Space inside DTL for steering and BPM.
 - Optimizations of Shunt impedance by asymmetric cell.
 - Reduce number of PMQ.
 - High gradient of PMQ, from 54 T/m to 71 T/m.

• FFDD Lattice:

- No space inside DTL.
- Low gradient of PMQ.

DTL Example

25

20

15 -

10

5

SF runs from 3 to 50 MeV Data collect and analysis on Excel Power by SF*1.25

Design Summary

Tank	No of	Length	Wfinal	Power
	Cells	m	Mev	MW
1	66	7.47	19.20	2.050
2	29	5.75	34.88	2.045
3	24	5.93	50.26	2.072
Total	119	19.15		6.17

[06/09/2011] [H:/ESS/Settembre 2011/dtl x cern/FODO/constG/EssDTL.ini] TraceWin - CEA/DSM/Irfu/SACM

TraceWin - CEA/DSM/Irfu/SACM

Lattice	FODO Const. G	FODO Equip. G	FFDD Const. G	FFDD Equip. G
# PMQ	62	62	119	119
G PMQ [T/m]	54	72 - 31	45.5	51.5 - 22.5
Emit(x,y) increase [%]	16	14	13	15
Emit(z) increase [%]	26	14	23	13
Halo(x,y) increase [%]	59	32	48	30
Halo(z) increase [%]	14	34	41	35

The Equipartitioned design show less emittance and halo increase.

Longitudinal Acceptance of the DTL

Transverse Acceptance of the DTL

Errors study on the DTL example

- Magnetic center respect the geometrical center shake of +/- 0.2 mm
 Yaw/pitch/Roll of +/-1°=17mrad
- •Gradient error of +/-1%
- •All errors apply together with a Gaussian input beam distribution
- 100 DTL generated.
- •10^5 particles i.e. 1.4 W for particles.

10^5 particles;10^2 DTL; Max Quad shake of X,Y ±0.2 mm; ±1°; ±1%

Steerers on FODO Lattice

 Using the empty space it has been put steerers X;Y almost at 90° phase advance apart for tank and 2 BPMs.

8 Steerers for tank14 steerers for tank 2 and 3

adjust_steerer 1

steerer 0 0

DTL_CEL 69.538 22.5 22.5 0 0 -54 124959.2 -40.47 10 0 0.08099 0.79522 -0.35473 -0.15947 DTL_CEL 70.592 22.5 22.5 0 -54 0 127928.9 -40.04 10 0 0.08221 0.79848 -0.34964 -0.15932 DTL_CEL 71.661 22.5 22.5 0 54 130968.8 -39.62 10 0 0.08346 0.80172 -0.34458 -0.15917 DTL_CEL 72.745 22.5 22.5 0 54 0 134080.2 -39.20 10 0 0.08472 0.80494 -0.33954 -0.15901 adjust_steerer 1

steerer 0 0

DTL_CEL 73.845 22.5 22.5 0 0 -54 137264.3 -38.78 10 0 0.08601 0.80814 -0.33454 -0.15884 DTL_CEL 74.960 22.5 22.5 0 -54 0 140522.2 -38.36 10 0 0.08730 0.81132 -0.32957 -0.15868 DTL_CEL 76.091 22.5 22.5 0 54 143855.3 -37.94 10 0 0.08862 0.81447 -0.32465 -0.15850 DTL_CEL 77.237 22.5 22.5 0 54 0 147264.7 -37.53 10 0 0.08996 0.81759 -0.31976 -0.15833 adjust_steerer 1

steerer 0 0

DTL_CEL 78.399 22.5 22.5 0 0 -54 150751.5 -37.11 10 0 0.09131 0.82069 -0.31491 -0.15815 DTL_CEL 79.577 22.5 22.5 0 -54 0 154317.1 -36.70 10 0 0.09269 0.82375 -0.31012 -0.15796 DTL_CEL 80.771 22.5 22.5 0 54 157962.5 -36.29 10 0 0.09408 0.82678 -0.30537 -0.15778 DTL_CEL 81.980 22.5 22.5 0 54 0 161689.0 -35.89 10 0 0.09549 0.82978 -0.30067 -0.15758 adjust_steerer 1

steerer 0 0

DTL_CEL 83.206 22.5 22.5 0 0 -54 165497.7 -35.49 10 0 0.09692 0.83274 -0.29604 -0.15739 DTL_CEL 84.447 22.5 22.5 0 -54 0 169389.7 -35.09 10 0 0.09837 0.83566 -0.29146 -0.15720 DTL_CEL 85.705 22.5 22.5 0 0 54 173366.2 -34.69 10 0 0.09984 0.83854 -0.28694 -0.15700 DTL_CEL 86.979 22.5 22.5 0 54 0 177428.2 -34.29 10 0 0.10132 0.84137 -0.28249 -0.15680 DTL_CEL 88.269 22.5 22.5 0 0 -54 181577.0 -33.90 10 0 0.10283 0.84417 -0.27811 -0.15660 DTL CEL 89.575 22.5 22.5 0 -54 0 185813.5 -33.51 10 0 0.10435 0.84691 -0.27380 -0.15641 DTL_CEL 90.897 22.5 22.5 0 0 54 190138.9 -33.13 10 0 0.10589 0.84961 -0.26956 -0.15621 DTL CEL 92.235 22.5 22.5 0 54 0 194554.1 -32.74 10 0 0.10746 0.85226 -0.26541 -0.15601 DTL_CEL 93.590 22.5 22.5 0 0 -54 199060.2 -32.37 10 0 0.10904 0.85486 -0.26133 -0.15582 DTL_CEL 94.961 22.5 22.5 0 -54 0 203658.2 -31.99 10 0 0.11064 0.85740 -0.25733 -0.15563 DTL_CEL 96.348 22.5 22.5 0 0 54 208349.1 -31.62 10 0 0.11226 0.85989 -0.25343 -0.15544 DTL_CEL 97.752 22.5 22.5 0 54 0 213133.8 -31.25 10 0 0.11390 0.86232 -0.24961 -0.15525 DTL CEL 99.171 22.5 22.5 0 0 -54 218013.3 -30.88 10 0 0.11555 0.86469 -0.24588 -0.15507 DTL_CEL 100.607 22.5 22.5 0 -54 0 222988.5 -30.52 10 0 0.11723 0.86700 -0.24225 -0.15490 DTL CEL 102.060 22.5 22.5 0 0 54 228060.3 -30.16 10 0 0.11893 0.86925 -0.23872 -0.15473 DTL_CEL 103.528 22.5 22.5 0 54 0 233229.5 - 29.81 10 0 0.12064 0.87143 - 0.23529 - 0.15457 nosition 1 0 0 0 0

DTL_CEL 105.013 22.5 22.5 0 0 -54 238496.9 -29.46 10 0 0.12238 0.87355 -0.23196 -0.15442 DTL_CEL 106.513 22.5 22.5 0 -54 0 243863.4 -29.11 10 0 0.12438 0.87561 -0.22873 -0.15427 DTL_CEL 109.563 22.5 22.5 0 54 0 243863.4 -29.11 10 0 0.12590 0.87759 -0.22261 -0.15414 DTL_CEL 109.563 22.5 22.5 0 54 0 254896.7 -28.43 10 0 0.12769 0.87951 -0.22261 -0.15402 DTL_CEL 111.113 22.5 22.5 0 -54 0 266335.1 -27.76 10 0 0.12950 0.88135 -0.21971 -0.15391 DTL_CEL 112.678 22.5 22.5 0 -54 0 266335.1 -27.76 10 0 0.13133 0.88312 -0.21693 -0.15381 DTL_CEL 114.259 22.5 22.5 0 54 0 278184.1 -27.11 10 0 0.13350 5.088645 -0.21173 -0.15366 diag_position 1 0 0.05

DTL_CEL 117.469 22.5 22.5 0 0 -54 284264.2 -26.79 10 0 0.13693 0.88800 -0.20930 -0.15361 DTL_CEL 119.098 22.5 22.5 0 -54 0 290448.7 -26.47 10 0 0.13884 0.88947 -0.20700 -0.15358 DTL CEL 120.743 22.5 22.5 0 0 54 296738.2 -26.16 10 0 0.14076 0.89087 -0.20483 -0.15357

FODO const. G with 32 steerers

FODO Equip. G with 32 steerers

Conclusion on DTL example

- FFDD and FODO almost same PMQ grad.
- FFDD better output emittance.
- Constant Grad. more "robust" respects to errors.
- FODO more flexible and at lower cost.
- Steerers on FODO reduce the losses by 1 order of magnitude.
- A possible solution with PMQ G=54 T/m -> as Linac4 DTL tender.
- Space for steerers and BPM -> low tolerance on PMQ and reduced intertank distance.
- No problem by losses -> low tolerance on PMQ.

Thank you!

Design Method

- DTLFISH: design and optimization of the DTL shape from 3 to 50 MeV.
- Worksheet: import of DTLFISH data and fit cell by cell.
- Worksheet : Synch. Phase, PMQ, Lattice and EO, Es Fields design.
- Worksheet : data for TraceWin cell by cell, including TTF' and TTF''.
- TraceWin: Phase advance design and input matched conditions.
- TraceWin: Errors study.

Emittance evolution on the DTL

The emittance increase depend from the input beam distribution

First DTL Cell

PMQ

- •Difficult to housing the Quad on the first DTL cell.
- •The least expensive type has rectangular PM pieces.
- •The most performing is the Bullet shape.
- •Field clamp?
- •Bore aperture ID?
- •PMQ tolerance!!!

	SNS	PL-7
CERN Linac4		
ID=22 mm	ID=25.4 mm	1D=12.7 mm
L=45 mm	L =35 mm	L =25.4 mm
Gmax=54 T/m	G =36 T/m	G =17 <u>5 T/m_</u>

Particles density plot for different focusing scheme along the DTL

