Contribution ID: 6 Type: **Presentation**

Global Extraction of the C-12, Ca-40, and Fe-56 Nuclear Electromagnetic Response Functions and Comparisons to Nuclear Theory and Neutrino/Electron Monte Carlo Generators

Thursday 4 September 2025 16:50 (23 minutes)

We report on global extractions of the 12 C, 40 Ca and 56 Fe longitudinal $(calR_L)$ and transverse $(calR_T)$ nuclear electromagnetic response functions from an analysis of all available electron scattering and photoprodution data on these nuclei. The response functions are extracted for energy transfer ν , spanning the nuclear excitation, quasielastic (QE) scattering with one nucleon (1p1h) and two nucleon (2p2h) final states, and the resonance and inelastic continuum. We extract $calR_L$ and $calR_T$ as functions of ν for both fixed values of Q^2 and also for fixed values of 3-momentum transfer q. Given the nuclear physics common to both electron and neutrino scattering from nuclei, extracted response functions from electron scattering spanning a large range of Q^2 and ν also provide a powerful tool for validation and tuning of neutrino Monte Carlo (MC) generators. In this paper we present comparisons of our previous measurements of 12 C and new measurements of 40 Ca and 56 Fe nuclear response functions to the predictions of the "Energy Dependent-Relativistic Mean Field" (ED-RMF) calculation, and the predictions of an improved superscaling model (SuSAv2) over the entire kinematic range.

Author: BODEK, Arie (University of Rochester (US))

Presenter: BODEK, Arie (University of Rochester (US))

Session Classification: WG2

Track Classification: NuFACT 2025: WG2 - Neutrino Scattering