FAST BEAM-ION INSTABILITIES

Vacuum Specifications in CLIC Main Linac

Adrian Oeftiger

Supervisor: Giovanni Rumolo

CERN, BE/ABP-CC3

August 24, 2011

《曰》 《聞》 《臣》 《臣》 三臣 …

Outline

Introduction

- Fast Beam-Ion Instability
- Field Ionization
- FASTION & Application to CLIC

2 Results of Pressure Scans

- Summary of Frequency Analysis & Single Gas Species
- Different Main Linac Designs
- Parameter Scans

3 Conclusion

Fast Beam-Ion Instability Field Ionization FASTION & Application to CLIC

Fast Beam-Ion Instability I

Fast beam-ion instability (FBII):

- electron bunches create ions out of residual gases by
 - scattering ionization
 - field ionization exceeding threshold (beam transversely small enough)

• electromagnetic interaction between electrons and ions

- ions created bunch by bunch and kicked by passing bunches
- electron bunches feel effect of ion field
- resulting in 1. extra phase advance shift over bunch train
 - possible excitation of unstable ion-electron coupled motion (ions do not necessarily need to be trapped)

< ロ > < 同 > < 三 > < 三 >

Fast Beam-Ion Instability Field Ionization FASTION & Application to CLIC

Fast Beam-Ion Instability II

- two-stream instability:
 - accumulation of ions around beam for long enough times
 ⇒ coupled oscillations between electrons and ions triggered (resonance, grows by its own)

source: http://sps-impedance.web.cern.ch/sps-impedance/USPAS/TwoStream.pdf

伺下 イヨト イヨト

Shrinking Transverse Beam Size I

• acceleration of beam causes shrinking transverse size $\sigma_{x,y}$:

$$\sigma_{x,y} = \sqrt{\epsilon_{x,y}(s) \cdot \beta_{x,y}(s)}$$

• geometric emittances shrink since $\epsilon_{x,y} = -$

- β -functions increase along Main Linac with $\beta_{x,y} \approx \sqrt{\gamma}$ to partially compensate
- thus we see

$$\sigma_{x,v} \propto \gamma^{-\frac{1}{4}}$$

Fast Beam-Ion Instability Field Ionization FASTION & Application to CLIC

Shrinking Transverse Beam Size II

$$\sigma_{x,y} \propto \gamma^{-\frac{1}{4}}$$

- field ionization can start (threshold transverse beam size)
- trapping condition changes along Main Linac (classical trapping only occurs at the very beginning)
- excited frequencies different along Main Linac

Fast Beam-Ion Instability Field Ionization FASTION & Application to CLIC

Field Ionization

- peak electric field rises with shrinking transverse beam size
- residual gases are ionized in area where electric field exceeds gas-specific thresholds

Gas Species	ξ [eV]	E_{th} [GV/m]
H ₂	15.4	26
H ₂ O	12.6	18.5
СО	14.0	22
CO ₂	13.8	21.5

FASTION code

FASTION code produces several output files, e.g.

bunch by bunch offsets x, x', y, y' over whole train for all lattice points

Figure: Bunch offsets – ion species: H₂O, pressure: 20nTorr

< A >

FASTION code

FASTION code produces several output files, e.g.

 bunch by bunch offsets x, x', y, y' over whole train for all lattice points

Figure: Bunch offsets – ion species: H₂O, pressure: 20nTorr

FASTION code

FASTION code produces several output files, e.g.

- bunch by bunch offsets x, x', y, y' over whole train for all lattice points
- sample ion trajectories recorded uniformly distributed

Figure: Ion trajectories – ion species: H₂O, pressure: 20nTorr

FASTION code

FASTION code produces several output files, e.g.

- bunch by bunch offsets x, x', y, y' over whole train for all lattice points
- sample ion trajectories recorded uniformly distributed

Figure: Ion trajectories – ion species: H₂O, pressure: 20nTorr

Introduction Results of Pressure Scans Conclusion FASTION & Application to CLIC

Specifications

Parameters used in the study of CLIC Main Linac:

parameter	symbol	nominal	scaled	different lattice	
		version	version	version	
Energy	<i>p</i> ₀ [GeV]	9 to 1500	9 to 500	9 to 250	
Normalized	. [mm]	660 10	660 10	660 10	
transverse emittance	$\epsilon_{x,y}$ [nm]	000, 10	000, 10	000, 10	
Bunch population	N	$4 imes 10^9$	$1.33 imes10^9$	$6.8 imes10^9$	
Number of bunches	N _b	312	1248	354	
Bunch spacing	ΔT_b [ns]	0.5	0.5	0.5	
Bunch length	σ_z [ps]	0.15	0.15	0.15	
Main Linac length:	<i>L</i> [km]	20.5	20.5	4.5	
Gas pressure	P [nTorr]	scanned	scanned	scanned	
Scattering ionization	σ. [MBarn]	2	2	2	
cross section	O ions [WDarn]	2			
Threshold of the	$E_{\rm c}$ [GV/m]	18	18	18	
electric field		10	10	10	

Adrian Oeftiger Supervisor: Giovanni Rumolo Fast Beam-ion Instabilities in CLIC Main Linac

同 ト イ ヨ ト イ ヨ ト

э

Fast Beam-Ion Instability Field Ionization FASTION & Application to CLIC

同 ト イ ヨ ト イ ヨ ト

Field Ionization Area

- field ionization occurs differently depending on the lattice
- scaled and alternative Linac design: field ionization only appears in the horizontally defocussing magnets (since $E_{max} \propto \frac{1}{\sigma_x}$)

Nominal 1.5 TeV and scaled 500 GeV Linac:

Fast Beam-Ion Instability Field Ionization FASTION & Application to CLIC

Field Ionization Area

- field ionization occurs differently depending on the lattice
- scaled and alternative Linac design: field ionization only appears in the horizontally defocussing magnets (since $E_{max} \propto \frac{1}{\sigma_x}$)

Alternative 250 GeV Linac:

Adrian Oeftiger

Supervisor: Giovanni Rumolo

Fast Beam-ion Instabilities in CLIC Main Linac

Frequency Analysis at 20nTorr

- evaluation of frequency dependencies on ion mass number
- upcoming unstable resonance frequencies at A = 5, clear beam instability from A = 7 on (20nTorr)
- frequency mean values and standard deviation:

Adrian Oeftiger Supervisor: Giovanni Rumolo

Fast Beam-ion Instabilities in CLIC Main Linac

伺 ト イヨト イヨト

Single Gas Species

- analysed pressure thresholds of single gas species
 - fourier spectrum of bunch centroids at the end of Linac, maximum mode grows out of noise at pressure threshold
- main gas components yield:
 - H_2 stable at least until 200nTorr (\Rightarrow above considered pressure range)
 - H₂O becomes unstable from 4nTorr on
 - CO becomes unstable from 3nTorr on
 - CO₂ becomes unstable from 2nTorr (x-plane) and 3nTorr (y-plane) on

Summary of Frequency Analysis & Single Gas Species Different Main Linac Designs Parameter Scans

Composition of Vacuum

• analysed three different vacuum compositions:

	Unbaked	Baked	Baked Vacuum
	Vacuum	Vacuum	With NEG Pumping
H ₂	40%	80%	90%
H ₂ O	40%	10%	4%
CO	10%	5%	3%
CO ₂	10%	5%	3%

Thanks to S. Calatroni for providing the compositions

B N A B N

 total pressure fixed where H₂ part neglected in gas mixture simulations (i.e. Baked & NEG @ 40 nTorr = 1.6 nTorr H₂O + 1.2 nTorr CO + 1.2 nTorr CO₂)

Nominal CoM Energy 3 TeV

• constant field ionization from 4 km onwards

unbaked vacuum unstable above 7-8 nTorr

Nominal CoM Energy 3 TeV

• constant field ionization from 4 km onwards

- unbaked vacuum unstable above 7-8 nTorr
- baked vacuum unstable above 20-25 nTorr

-

Nominal CoM Energy 3 TeV

• constant field ionization from 4 km onwards

- unbaked vacuum unstable above 7-8 nTorr
- baked vacuum unstable above 20-25 nTorr
- baked vacuum with NEG unstable above 50 nTorr

Nominal CoM Energy 3 TeV

• constant field ionization from 4 km onwards

- unbaked vacuum unstable above 7-8 nTorr
- baked vacuum unstable above 20-25 nTorr
- baked vacuum with NEG unstable above 50 nTorr
- comparing "active" part: NEG most stable

Introduction Summary of Frequency Analysis & Single Gas Species Results of Pressure Scans Conclusion Parameter Scans

Scaled CoM Energy 1 TeV

- at first, scaled lattice with nominal parameters studied
- three different field ionization models

Scaled CoM Energy 1 TeV

- at first, scaled lattice with nominal parameters studied
- three different field ionization models

- unbaked vacuum unstable above x: 5 nTorr, y: 6-7 nTorr
- baked vacuum unstable above x: 15 nTorr, y: 20-25 nTorr
- NEG unstable above x: 30-40 nTorr, y: 40-50 nTorr

 Introduction
 Summary of Frequency Analysis & Single Gas Species

 Results of Pressure Scans
 Different Main Linac Designs

 Conclusion
 Parameter Scans

Scaled CoM Energy 1 TeV

- scaled version with nominal parameters more critical than nominal lattice
- thereafter, different parameters (bunch population N/3and bunch number $4 \times N_b$)
- now FBII occur at even lower pressures:
 - unbaked vacuum unstable above x: 3 nTorr, y: 5 nTorr

- 同 ト - ヨ ト - - ヨ ト

- baked vacuum unstable above x: 8 nTorr, y: 15 nTorr
- NEG unstable above x: 20 nTorr, y: 30 nTorr

Alternative CoM Energy 500 GeV

- at first, alternative lattice with nominal parameters studied
- completely self-consistent field ionization model
- alternative lattice less prone to FBII than nominal lattice:
 - unbaked vacuum unstable above 20 nTorr
 - baked vacuum unstable above 60 nTorr
 - NEG unstable above 110-120 nTorr
- likewise, weaker amplification of the instable motion

Alternative CoM Energy 500 GeV

- correct design values are
 - increased bunch number $N_b = 354$ (instead of 312)
 - increased bunch population $N=6.8 imes10^9$ (instead of $4 imes10^9$)
- stronger FBII in horizontal plane are encountered, vertical plane is not affected at all:
 - unbaked vacuum unstable above x: 10 nTorr, y: 20 nTorr

- 同 ト - ヨ ト - - ヨ ト

- baked vacuum unstable above x: 30 nTorr, y: 60 nTorr
- NEG unstable above x: 60 nTorr, y: 110-120 nTorr
- \Rightarrow horizontal thresholds lowered by 50%!

Parameter Scans

- concentration on nominal 3 TeV lattice
- pressure scans while changing a few other parameters as
 - bunch spacing $\Delta T_b = 1$ ns (doubled) and bunch number $N_b = 156$ (halved)
 - bunch charge $N = 1...9 \times 10^9$ (nominal value 4×10^9)
 - horizontal emittance $\epsilon_x = 330,660,1320$ nm (nominal value 660 nm)
 - vertical emittance $\epsilon_y = 5, 10, 30, 50 \text{ nm}$ (nominal value 10 nm)

同 ト イ ヨ ト イ ヨ ト

Parameter Scans

- concentration on nominal 3 TeV lattice
- pressure scans while changing a few other parameters as
 - bunch spacing $\Delta T_b = 1$ ns (doubled) and bunch number $N_b = 156$ (halved)
 - bunch charge $N = 1...9 \times 10^9$ (nominal value 4×10^9)
 - horizontal emittance $\epsilon_x = 330,660,1320$ nm (nominal value 660 nm)
 - vertical emittance $\epsilon_y = 5, 10, 30, 50$ nm (nominal value 10 nm)
- double bunch spacing and halved bunch number yield
 - no vertical instabilities
 - horizontal instabilities appear at
 - unbaked vacuum: 15 nTorr
 - baked vacuum: 45-50 nTorr
 - baked vacuum and NEG pumping: 80-90 nTorr

Bunch Charge Scan

- bunch charge scanned as $N = 1...9 \times 10^9$ (nominal value 4×10^9)
- first run of simulations: field ionization model fixed

• lower bunch charge means ions get less overfocussed

(b) (4) (2) (4)

Bunch Charge Scan

- bunch charge scanned as $N=1...9 imes 10^9$ (nominal value $4 imes 10^9$)
- first run of simulations: field ionization model fixed
- field ionization inset and area varies significantly

• lower bunch charge means ions get less overfocussed

Bunch Charge Scan

- bunch charge scanned as $N = 1...9 \times 10^9$ (nominal value 4×10^9)
- first run of simulations: field ionization model fixed
- field ionization inset and area varies significantly

- lower bunch charge means ions get less overfocussed
- situation reversed, lowest bunch charge is best now

Introduction Summary of Frequency Analysis & Single Gas Species Results of Pressure Scans Conclusion Parameter Scans

Horizontal Emittance Scan

• horizontal emittance scanned as $\epsilon_x = 330,660,1320$ nm (nominal value 660 nm)

伺 ト イヨト イヨト

э

Summary of Frequency Analysis & Single Gas Species Different Main Linac Designs Parameter Scans

-

< ∃ →

Vertical Emittance Scan

• vertical emittance scanned as $\epsilon_y = 5, 10, 30, 50 \text{ nm}$ (nominal value 10 nm)

Conclusion

• for combinations of gas species, thresholds more relaxed

Vacuum	Nominal	Scaled		Alternative	
Composition	3 TeV	1 TeV		500 GeV	
		$N_b = 312$	$N_b = 1248$	$N_b = 312$	$N_{b} = 354$
		N = 4e9	N = 1.33e9	N = 4e9	N = 6.8e9
Unbaked	7-8 nTorr	5 nTorr	3 nTorr	20 nTorr	10 nTorr
Baked	20-25 nTorr	15 nTorr	8 nTorr	60 nTorr	20 nTorr
Baked and	50 pTorr	30-40	20 nTorr	110-120	a 60 nTorr
NEG pumped	50 11 1011	nTorr	20 11 1011	nTorr	

- doubled interbunch spacing and halved bunch number
 ⇒ thresholds about two times as high as nominal ones
- bunch charge scan shows that fully ionized area grows with increasing bunch populations
 ⇒ horizontally, beam is more stable with diminishing bunch charge, N = 1 × 10⁹ is best case (since no f.i.)