Correlations and fluctuations from lattice QCD

Claudia Ratti Università degli Studi di Torino and INFN, Sezione di Torino

In collaboration with: S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, K. Szabó (Wuppertal-Budapest collaboration); arXiv: 1112.4416 (JHEP 2012)

Motivation

- We live in a very exciting era to understand the fundamental constituents of matter and the evolution of the Universe
- We can create the deconfined phase of QCD in the laboratory
- Lattice QCD simulations have reached unprecedented levels of accuracy
 - physical quark masses
 - \implies several lattice spacings \rightarrow continuum limit
- The joint information between theory and experiment can help us to shed light on QCD

The QCD phase diagram

Temperature

Discretization of space-time

• Simplest: isotropic hypercubic grid with spacing $a = a_S = a_T$ and size $N_S \times N_S \times N_S \times N_T$.

• Physical size of the lattice: $L = N_S a$

• Temperature:
$$T = \frac{1}{N_T a}$$

• N_T large $\Rightarrow a$ small: closer to continuum limit but computationally expensive

Choice of the action

no consensus: which action offers the most cost effective approach Aoki, Fodor, Katz, Szabo, JHEP 0601, 089 (2006)

• our choice tree-level $O(a^2)$ -improved Symanzik gauge action

2-level (stout) smeared improved staggered fermions

$$\mathbf{V} = \mathbf{P} \left[\longrightarrow + \rho \left(\begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \right) + \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right) \right]$$

Quark number susceptibilities

- The deconfined phase of QCD can be reached in the laboratory
- Need for unambiguous observables to identify the phase transition
 - susceptibilities of conserved charges (baryon number, electric charge, strangeness)
 S. Jeon and V. Koch (2000), M. Asakawa, U. Heinz, B. Müller (2000)
- A rapid change of these observables in the vicinity of T_c provides an unambiguous signal for deconfinement
- These observables are sensitive to the microscopic structure of the matter
 - non-diagonal correlators give information about presence of bound states in the QGP
- They can be measured on the lattice as combinations of quark number susceptibilities

The observables under study

The chemical potentials are related:

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q};$$

$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q};$$

$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}.$$

susceptibilities are defined as follows:

$$\chi_{lmn}^{BSQ} = \frac{\partial^{l+m+n} p/T^4}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n}.$$

Here we concentrate on the quadratic susceptibilities

$$\chi_2^X = \frac{1}{VT^3} \langle N_X^2 \rangle$$

and on the correlators between different charges

$$\chi_{11}^{XY} = \frac{1}{VT^3} \langle N_X N_Y \rangle.$$

Results: light and strange quark susceptibilities

$$\chi_2^u = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_u \partial \mu_u} \right|_{\mu_i = 0} \qquad \chi_2^s = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_s^2} \right|_{\mu_i = 0}$$

igoplus quark number susceptibilities exhibit a rapid rise close to T_c

 \blacklozenge at large T they reach $\sim 90\%$ of the ideal gas limit

Comparison between light and strange quark susceptibilities

strange quark susceptibilities have their rapid rise at larger temperatures compared to the light quark ones

 \clubsuit they rise more slowly as a function of T

Results: nondiagonal susceptibilities

$$\chi_{11}^{us} = \chi_{11}^{ds} = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_u \partial \mu_s} \right|_{\mu_i = 0}$$

non-diagonal susceptibilities look at the linkage between different flavors

igstarrow they exhibit a strong dip in the vicinity of T_c

they vanish in the QGP phase at large temperatures

Results: susceptibilities of baryon number and electric charge

$$\chi_2^B = \frac{1}{9} \left(2\chi_2^u + \chi_2^s + 2\chi_{11}^{ud} + 4\chi_{11}^{us} \right); \quad \chi_2^Q = \frac{1}{9} \left(5\chi_2^u + \chi_2^s - 4\chi_{11}^{ud} - 2\chi_{11}^{us} \right)$$

 \blacklozenge rapid rise around T_c

 \clubsuit It reaches $\sim 90\%$ of ideal gas value at large temperatures

Results: isospin susceptibility

$$\chi_2^I = \frac{1}{2} \left(\chi_2^u - \chi_{11}^{ud} \right)$$

igoplus rapid rise around T_c

igoplus It reaches $\sim 90\%$ of ideal gas value at large temperatures

Testing the presence of bound states in the QGP

We define the following object $C_{BS} = -3 \frac{\langle BS \rangle}{\langle S^2 \rangle}$

V. Koch, A. Majumder, J. Randrup, PRL95 (2005).

In a QGP phase:In hadron gas phase:
$$\bigstar -3\langle BS \rangle = \langle (n_{\bar{s}} - n_s)^2 \rangle$$
 $\bigstar -3\langle BS \rangle = 3[\Lambda + \bar{\Lambda} + \Sigma + \bar{\Sigma} + \dots] + 6[\Xi + \bar{\Xi} + \dots] + 9[\Omega + \bar{\Omega} + \dots]$ $\langle S^2 \rangle = \langle (n_{\bar{s}} - n_s)^2 \rangle$ $\langle S^2 \rangle = K^+ + K^- + K^0 + \Lambda + \bar{\Lambda} + \dots$ at all T and μ $at T \simeq T_c$ and $\mu = 0$ $C_{BS} = 1$ $C_{BS} = 0.66$

Results: baryon-strangeness correlator

$${\sf C}_{BS} = 1 + rac{\chi_{11}^{us} + \chi_{11}^{ds}}{\chi_2^s}$$

 $\bullet C_{BS}$ indicates the possibility of bound states in a certain window above T_c

igoplus there is a window of about 100 MeV above the transition where $C_{BS} < 1$

Charm quark number susceptibilities

$$\chi_2^c = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_c \partial \mu_c} \right|_{\mu_i = 0}$$

charm susceptibilities rise at much larger temperatures compared to the light quark ones

their rise with temperature is much slower

Possible interpretations

- survival of open charm hadrons up to $T \simeq 2T_c$?
- HRG results agree with the lattice up to the inflection point in the data

Possible interpretations

- survival of open charm hadrons up to $T \simeq 2T_c$?
- HRG results agree with the lattice up to the inflection point in the data
- thermal excitation of charm quarks takes place at larger temperatures
- ideal gas of charm quarks agrees with lattice

need for non-diagonal quark number susceptibilities

Conclusions

- study of diagonal and non-diagonal quark number susceptibilities for $N_f = 2 + 1$ dynamical flavors
- diagonal quark number susceptibilities: signals of QCD phase transition
 - \rightarrow rapid rise close to T_c
 - ightarrow susceptibilities of different flavors show their rise at different T
- igstarrow correlations between different flavors are large immediately above T_c
 - possibility of bound states survival in the QGP
- diagonal charm quark susceptibilities rise at much larger temperatures
- they don't allow to distinguish between HRG and free charm gas
 - need for non-diagonal correlators

There are evidences for deviations from statistical model predictions at the LHC - baryon production -

R. Preghenella, ALICE Collaboration, SQM 2011:

	ALICE data Pb-Pb √s _{NN} = 2.6 TeV these results	LHC prediction* T _{ch} = 164 MeV, µ _B =1 MeV A.Andronic et al, Phys.Lett.B 673, 142 (2009)	LHC prediction* $T_{ch} = (170 \pm 5) \text{ MeV}, \mu_{B} = (1 \pm 4) \text{ MeV}$ <u>J.Cleymans et al, PRC 74, 034903 (2006)</u>
<i>K</i> ⁺ /π ⁺	0.156 ± 0.012	0.164	0.180 ± 0.001
<i>K</i> ⁻/π⁻	0.154 ± 0.012	0.163	0.179 ± 0.001
p/π^{+}	0.0454 ± 0.0036	0.072	0.091 ± 0.009
<i>p/π</i> ⁻	0.0458 ± 0.0036	0.071	0.091 ± 0.009
		* prediction for cent	ral Pb-Pb collisions at √s _№ = 5.5 TeV

Conclusion:

possibly no common freeze-out surface for all particle species ?

Statistics and continuum extrapolation

Claudia Ratti

There are evidences for deviations from statistical model predictions at the LHC $- J/\psi$ production -

Data: ALICE/ PHENIX (forward rapidity) - QM 2011

Data: ALICE / ATLAS / CMS (mid rapidity) - QM 2011

Prediction: Braun-Munzinger, Stachel arXiv:0901.2500

Conclusion:

All datasets (forward and mid-rapidity, low and high pT) show significant J/ψ suppression in central collisions in contradiction to statistical model predictions: possibly no common freeze-out surface or no strong partonic recombination ?

Comparison with previous lattice data

$$\mathbf{c}_2^{uu} = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_u \partial \mu_u} \right|_{\mu_i = 0}$$

igstarrow physical quark masses $m_s/m_{u,d}=28.15$

finer lattice spacings approaching the continuum

the phase transition turns out to be much smoother

All path approach

Our goal:

- determine the equation of state for several pion masses
- reduce the uncertainty related to the choice of β^0

conventional path: A, though B, C or any other paths are possible

generalize: take all paths into account

Finite volume and discretization effects

• finite $V: N_s/N_t = 3$ and 6 (8 times larger volume): no sizable difference

- finite a: improvement program of lattice QCD (action observables)
 - \rightarrow tree-level improvement for p (thermodynamic relations fix the others)
 - \blacksquare trace anomaly for three T-s: high T, transition T, low T
 - \rightarrow continuum limit $N_t = 6, 8, 10, 12$: same with or without improvement
- igoplus improvement strongly reduces cutoff effects: slope $\simeq 0$ ($1-2\sigma$ level)

Pseudo-scalar mesons in staggered formulation

- Staggered formulation: four degenerate quark flavors ('tastes') in the continuum limit
- Rooting procedure: replace fermion determinant in the partition function by its fourth root
- At finite lattice spacing the four tastes are not degenerate
 - each pion is split into 16
 - the sixteen pseudo-scalar mesons have unequal masses
 - only one of them has vanishing mass in the chiral limit

