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Particle production in the universe

Motivation

[] We live in a very exciting era to understand the fundamental constituents of matter and the
evolution of the Universe

[1 We can create the deconfined phase of QCD in the laboratory

[] Lattice QCD simulations have reached unprecedented levels of accuracy
[1 physical quark masses

[1 several lattice spacings — continuum limit

[] The joint information between theory and experiment can help us to shed light on QCD
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The QCD phase diagram
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Particle production in the universe

Discretization of space-time

[1 Simplest: isotropic hypercubic grid with spacing a = ag = a7 and size
N5><N5><N5><NT.
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[] Physical size of the lattice: L = Nga

1
NTCL

[1 Temperature: 1" =

[1 N7 large = a small: closer to continuum limit but computationally expensive

Claudia Ratti



Particle production in the universe

Choice of the action

[1 no consensus: which action offers the most cost effective approach

Aoki, Fodor, Katz, Szabo, JHEP 0601, 089 (2006)

[J our choice tree-level O(a?)-improved Symanzik gauge action

B

2-level (stout) smeared improved staggered fermions
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Particle production in the universe

Quark number susceptibilities

[] The deconfined phase of QCD can be reached in the laboratory

[1 Need for unambiguous observables to identify the phase transition

[ ] susceptibilities of conserved charges (baryon number, electric charge, strangeness)
S. Jeon and V. Koch (2000), M. Asakawa, U. Heinz, B. Muller (2000)

[1 A rapid change of these observables in the vicinity of 7. provides an unambiguous signal

for deconfinement

[1 These observables are sensitive to the microscopic structure of the matter

[1 non-diagonal correlators give information about presence of bound states in the QGP

[1 They can be measured on the lattice as combinations of quark number susceptibilities

Claudia Ratti



Particle production in the universe

The observables under study

[1 The chemical potentials are related:

Hu — SMB SMQ7
— 1 1 .

Hd — BMB BMQ7
1 1

He = SHB = SHQ — Hs.

[] susceptibilities are defined as follows:
XBSQ _ o l—l—m—l—np/T4
b 0(up [T) 0 (s /T) ™ 0uq /T)"

[1 Here we concentrate on the quadratic susceptibilities

1
s (NF)

X
X2 —

[1 and on the correlators between different charges

1
i = (Nx Ny).
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Particle production in the universe

-~

diagonal and non-diagonal

guark number susceptibilities

Ny = 2+ 1 dynamical quark flavors

Ms/My g = 28.15
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Particle production in the universe

Results: light and strange quark susceptibilities

SB limit

qu

250
T [MeV]

[] quark number susceptibilities exhibit a rapid rise close to 1.

[ atlarge T they reach ~ 90% of the ideal gas limit
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Particle production in the universe

Comparison between light and strange quark susceptibilities
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[] strange quark susceptibilities have their rapid rise at larger temperatures compared to the

light quark ones

[] they rise more slowly as a function of T’
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Particle production in the universe

Results: nondiagonal susceptibilities
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[] non-diagonal susceptibilities look at the linkage between different flavors
[] they exhibit a strong dip in the vicinity of 1.

[] they vanish in the QGP phase at large temperatures
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Particle production in the universe

Results: susceptibilities of baryon number and electric charge
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[] rapid rise around 7.
[J 1t reaches ~ 90% of ideal gas value at large temperatures
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Particle production in the universe

Results: isospin susceptibility
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[] rapid rise around 7.

[J 1t reaches ~ 90% of ideal gas value at large temperatures
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Particle production in the universe

Testing the presence of bound states in the QGP

4 )
We define the following object

BS
C1BS = -3 <<52>>

V. Koch, A. Majumder, J. Randrup, PRL95 (2005).

In a QGP phase: In hadron gas phase:
0 —3(BS) = ((ns — ns)?) 0 —3(BS) =3[A+A+X+ X+
S , - +6[E+E+...]+9[Q+Q_+...]
(57) = ((ns = ns)7) (S%) = KT+ K~ + KO+ A+A+...
atall I"and u atl'>~7T.and =0
Cps =1 Cps = 0.66
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Particle production in the universe

Results: baryon-strangeness correlator

us+ ds
Cps = 1+ X171
X2

Cgs
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[1 C'pg indicates the possibility of bound states in a certain window above 1.

[] there is a window of about 100 MeV above the transition where Cgg < 1
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charm quark susceptibilities
Nf =24+1+1

with partial guenched charm

me/ms = 11.85
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Particle production in the universe

Charm quark number susceptibilities
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[1 charm susceptibilities rise at much larger temperatures compared to the light quark ones

[ their rise with temperature is much slower
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Particle production in the universe

Possible interpretations
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[l survival of open charm hadrons up to
T ~27T.?

[1 HRG results agree with the lattice up to

the inflection point in the data
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Particle production in the universe

Possible interpretations

x2”/T cont. 1+

X,5T2, N=12 o

XZS/T cont. !

T
qu/T cont. m
X,>/T? cont.  EEEE

HRG

or

150 200 250 300 350 400 450 500 550 600

T [MeV]

[] survival of open charm hadrons up to

T ~ 27,72

[] HRG results agree with the lattice up to

the inflection point in the data

- XM N=12 O
charm quark gas
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[] thermal excitation of charm quarks takes

place at larger temperatures

[] ideal gas of charm quarks agrees with

lattice

need for non-diagonal quark number susceptibilities
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Particle production in the universe

Conclusions

L] study of diagonal and non-diagonal quark number susceptibilities for Ny = 2 + 1
dynamical flavors

[1 diagonal quark number susceptibilities: signals of QCD phase transition
[ rapid rise close to 1.

[1 susceptibilities of different flavors show their rise at different 7'

[] correlations between different flavors are large immediately above 7T

[1 possibility of bound states survival in the QGP
[1 diagonal charm quark susceptibilities rise at much larger temperatures

[] they don't allow to distinguish between HRG and free charm gas

[1 need for non-diagonal correlators
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Particle production in the universe

-

Backup slides
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Particle production in the universe

There are evidences for deviations from

statistical model predictions at the LHC
- baryon production -

R. Preghenella, ALICE Collaboration, SQM 201 I:

. ALICE data LHC prediction* LHC prediction*
Pb-PbVs =2.6TeV T, =164 MeV, u, =1 MeV T, =(170%5) MeV, y = (1 £4) MeV

A_Andronic et al, Phys.Lett.B 673, 142 (2009) J.Cleymans et al, PRC 74, 034903 (2006) 034903 2006

these results

IELAN ™ onss - oiota T P e ear | 0BG 0,004 T

0.154 +0.012 0.163 0.179 + 0.001

0.0458 + 0.0036 0.071 0.091 £ 0.009

* prediction for central Pb-Pb collisions at \!sm =5.5TeV

| A.Andronic et al., Phys.Lett.B 673, 142 (2009) |

% N EEERE Pb'Pb\sNN'“Z?BTSV:
wh T ] possibly no common freeze-out
N T . . O O O O surface for all particle species ?

10°L W  Data:ALICE, 0-20%(preliminary) = —gp— —sp—d
E. ..ie... Model calc. with parameters: : _‘g
i T=148 MeV: (p =1MeV fixed)

10*
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Particle production in the universe

Statistics and continuum extrapolation
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There are evidences for deviations from

statistical model predictions at the LHC
- Jhp production -

Data: ALICE/ PHENIX (forward rapidity) - QM 2011 Data: ALICE / ATLAS / CMS (mid rapidity) - QM 2011
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o ATLAS, lyl<2.5, pT>6.5 GeV/c (arXiv:1012.5418)
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Braun-Munzinger, Stachel arXiv:0901.2500

Conclusion:

All datasets (forward and mid-rapidity,

low and high pT) show significant

Jhp suppression in central collisions in
contradiction to statistical model predictions:
possibly no common freeze-out surface or
no strong partonic recombination ?
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Particle production in the universe

Comparison with previous lattice data
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[1 physical quark masses mg/m,, ¢ = 28.15
L1 finer lattice spacings approaching the continuum

[] the phase transition turns out to be much smoother
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All path approach

[] Our goal:
[ 1 determine the equation of state for several pion masses

[ ] reduce the uncertainty related to the choice of 50
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[1 conventional path: A, though B, C or any other paths are possible

[] generalize: take all paths into account
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Particle production in the universe

Finite volume and discretization effects
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[J finite V' : Ng/IN; = 3 and 6 (8 times larger volume): no sizable difference

L] finite a: improvement program of lattice QCD (action observables)
1 tree-level improvement for p (thermodynamic relations fix the others)
[ 1 trace anomaly for three I'-s: high I', transition I’, low T’

L] continuum limit V; = 6, 8, 10, 12: same with or without improvement

[] improvement strongly reduces cutoff effects: slope~ 0 (1 — 20 level)
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Particle production in the universe

Pseudo-scalar mesons in staggered formulation

[] Staggered formulation: four degenerate quark flavors (‘tastes’) in the continuum limit
[] Rooting procedure: replace fermion determinant in the partition function by its fourth root
[1 At finite lattice spacing the four tastes are not degenerate

[1 each pion is splitinto 16

[] the sixteen pseudo-scalar mesons have unequal masses

[1 only one of them has vanishing mass in the chiral limit
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[1 Scaling starts for N; > &.

Claudia Ratti 28




