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Particle Production in Hadronic Collisions
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Factorization of perturbative and
non-perturbative regimes

Assumptions:

All energy scales (except for
masses) are of the same order

Mostly inclusive processes

Single large momentum transfer
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Problems with Collinear Factorization

Transverse momentum dependence:
Less inclusive processes
Wider range for transverse momentum of produced
particles

Enhancement of factorization breaking terms:
Very high energies
Nuclear effects
High densities in the small-x regime
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High Densities at Small-x

Soft gluon emission is
enhanced at large rapidities

BFKL dynamics predicts a
large growth in gluon densities
at small-x

Nonlinear dynamics predicts
the generation of a semi-hard
momentum scale which
justifies the use of perturbative
techniques
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Saturation in Nuclei

Nuclear enhancement factor
A1/3

Saturation region is available
at lower energies and in the
perturbative regime
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Factorization at Small x (in nuclei)

Covariant gauge:
Resummation of multiple
scatterings
Transverse momentum broadening

Light-cone gauge:
Appropriate choice of boundary
conditions turns off final (initial)
state interactions
Modified distribution function

Transverse momentum of partons
can no longer be ignored
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Resummation of Multiple Scatterings

Eikonal approximation→ Representation in coordinate
space
Choose a covariant gauge
Take high density target as a strong static color field
Effect of multiple scatterings can be resummed into a
Wilson line

U(x) = P exp
{

ig
∫

dz+ αa(z+, x)Ta
}
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Medium Average

〈O〉Y =

∫
Dα WY [α] O[α]

Weight function is given by non-perturbative physics
Quantum dynamics determined by CGC effective theory
Fundamental piece to understand the color correlations
among the partons participating in a given process
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Deep Inelastic Scattering at Small-x

∝ ψ(x1 − x2)
[
1− U(x1)U†(x2)

]

Light-cone wave function
Multiple scattering in the eikonal approximation in terms of
Wilson lines
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DIS at Small-x
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Conjugate

amplitude

dσγ∗T A→qq̄X

d3k1d3k2
= Ncαeme2

qδ(p
+ − k+

1 − k+
2 )

∫
d2x1

(2π)2

d2x′1
(2π)2

d2x2

(2π)2

d2x′2
(2π)2

× e−ik1⊥·(x1−x′1)e−ik2⊥·(x2−x′2)
∑

ψ∗T(x1 − x2)ψT(x′1 − x′2)

×
[
1 + Qxg(x1, x2; x′2, x

′
1)− Sxg(x1, x2)− Sxg(x

′
1, x
′
2)
]

Qxg (x1, x2; x′2, x′1) =
1

Nc

〈
TrU(x1)U†(x′1)U(x′2)U

†(x2)
〉

xg
Sxg (x1, x2) =

1
Nc

〈
TrU(x1)U†(x2)

〉
xg
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SIDIS and Total Cross Section

Integrating over momenta identifies coordinates in the
amplitude and conjugate amplitude
SIDIS

1 + Sxg(x2, x′2)− Sxg(x1, x2)− Sxg(x1, x′2)

Total cross section

2(1− Sxg(x1, x2))

Quadrupole disappears and cross sections are written in
terms of only dipole amplitudes
Gluon distribution related to Fourier transform of dipole
amplitude
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Gluon Distribution from DIS Dijet

Consider limit where two final
particle are almost back-to-back
Make separation between quark and
antiquark small
Singlet pair looks like a colorless
object
Octet pair looks like a gluon

FD, C. Marquet, B. Xiao, F. Yuan, 2011
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pA Collisions

Data available from RHIC (soon LHC)

Single hadron production

Cronin effect
Suppression at large rapidities as compared to pp

Di-hadron correlations
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Di-hadron correlations

Observed suppression of away side peak in azimuthal
correlation in the forward region
Considered strongest evidence of saturation so far

J. Albacete, C. Marquet, 2010
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Quark Initiated Processes
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†
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Quark Initiated Processes - Large-Nc

Use Fierz identities
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Leading term:

Tr[U(x1)U†(x2)]Tr[U†(x1)U(x3)U†(x4)U(x2)]
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Gluon Initiated Processes
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More Complicated Processes

Increasing the number of particles in the final state increases
the complexity of the correlators?

For example, look at DIS with one extra gluon:

2

= = 1
2

− 1
2Nc
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Additional Gluons in Large-Nc Limit
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Additional Gluons in Large-Nc Limit

Leading contribution comes from attaching both gluon legs
to the same fermion loop

Adding a gluon to either a dipole or a quadrupole gives
only dipoles and quadrupoles in the large-Nc limit

In the large-Nc limit, the only correlators needed to
describe production of an arbitrary number of particles are
the dipole and the quadrupole

FD, C. Marquet, B. Xiao, In preparation
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Conclusions

The study of multi-particle production in asymmetric
collisions can provide valuable information to determine
the dynamics of the small-x degrees of freedom in nuclei

The large-Nc limit greatly simplifies the description of such
processes

Further studies of the quadrupole amplitude are desirable

Simplification of correlators in the large-Nc limit is not a
property of the CGC set-up and can be generalized to
other cases of particles scattering in a background field
configuration
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