Multiple Particle Production in the Presence of Saturation

Fabio Dominguez

IPhT - Saclay

Excited QCD 2012 Peniche, Portugal

Particle Production in Hadronic Collisions

- Factorization of perturbative and non-perturbative regimes
- Assumptions:
 - All energy scales (except for masses) are of the same order
 - Mostly inclusive processes
 - Single large momentum transfer

Problems with Collinear Factorization

- Transverse momentum dependence:
 - Less inclusive processes
 - Wider range for transverse momentum of produced particles
- Enhancement of factorization breaking terms:
 - Very high energies
 - Nuclear effects
 - High densities in the small-x regime

High Densities at Small-*x*

- Soft gluon emission is enhanced at large rapidities
- BFKL dynamics predicts a large growth in gluon densities at small-x
- Nonlinear dynamics predicts the generation of a semi-hard momentum scale which justifies the use of perturbative techniques

Saturation in Nuclei

- Nuclear enhancement factor $A^{1/3}$
- Saturation region is available at lower energies and in the perturbative regime

Factorization at Small *x* (in nuclei)

- Covariant gauge:
 - Resummation of multiple scatterings
 - Transverse momentum broadening
- Light-cone gauge:
 - Appropriate choice of boundary conditions turns off final (initial) state interactions
 - Modified distribution function
- Transverse momentum of partons can no longer be ignored

Resummation of Multiple Scatterings

- Eikonal approximation \rightarrow Representation in coordinate space
- Choose a covariant gauge
- Take high density target as a strong static color field
- Effect of multiple scatterings can be resummed into a Wilson line

$$U(x) = \mathcal{P} \exp\left\{ig \int dz^+ \,\alpha_a(z^+, x) \, T^a\right\}$$

Medium Average

$$\langle \mathcal{O} \rangle_Y = \int \mathcal{D} \alpha \ W_Y[\alpha] \ \mathcal{O}[\alpha]$$

- Weight function is given by non-perturbative physics
- Quantum dynamics determined by CGC effective theory
- Fundamental piece to understand the color correlations among the partons participating in a given process

Deep Inelastic Scattering at Small-x

$$\propto \psi(x_1-x_2)\left[1-U(x_1)U^{\dagger}(x_2)
ight]$$

- Light-cone wave function
- Multiple scattering in the eikonal approximation in terms of Wilson lines

DIS at Small-*x*

$$Q_{x_g}(x_1, x_2; x_2', x_1') = \frac{1}{N_c} \left\langle \text{Tr}U(x_1)U^{\dagger}(x_1')U(x_2')U^{\dagger}(x_2) \right\rangle_{x_g} \quad S_{x_g}(x_1, x_2) = \frac{1}{N_c} \left\langle \text{Tr}U(x_1)U^{\dagger}(x_2) \right\rangle_{x_g}$$

SIDIS and Total Cross Section

- Integrating over momenta identifies coordinates in the amplitude and conjugate amplitude
- SIDIS

$$1 + S_{x_g}(x_2, x'_2) - S_{x_g}(x_1, x_2) - S_{x_g}(x_1, x'_2)$$

Total cross section

$$2(1-S_{x_g}(x_1,x_2))$$

- Quadrupole disappears and cross sections are written in terms of only dipole amplitudes
- Gluon distribution related to Fourier transform of dipole amplitude

Gluon Distribution from DIS Dijet

- Consider limit where two final particle are almost back-to-back
- Make separation between quark and antiquark small
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

FD, C. Marquet, B. Xiao, F. Yuan, 2011

Gluon Distribution from DIS Dijet

- Consider limit where two final particle are almost back-to-back
- Make separation between quark and antiquark small
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

```
FD, C. Marquet, B. Xiao, F. Yuan, 2011
```


Gluon Distribution from DIS Dijet

- Consider limit where two final particle are almost back-to-back
- Make separation between quark and antiquark small
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

FD, C. Marquet, B. Xiao, F. Yuan, 2011

pA Collisions

- Data available from RHIC (soon LHC)
- Single hadron production
 - Cronin effect
 - Suppression at large rapidities as compared to pp
- Di-hadron correlations

Di-hadron correlations

- Observed suppression of away side peak in azimuthal correlation in the forward region
- Considered strongest evidence of saturation so far

J. Albacete, C. Marquet, 2010

Quark Initiated Processes

 $\mathsf{Tr}[U(x_3)U^{\dagger}(x_4)T^aT^b]\tilde{U}_{ac}(x_1)\tilde{U}^{\dagger}_{cb}(x_2)$

Quark Initiated Processes - Large-N_c

Use Fierz identities

Leading term:

 $\mathsf{Tr}[U(x_1)U^{\dagger}(x_2)]\mathsf{Tr}[U^{\dagger}(x_1)U(x_3)U^{\dagger}(x_4)U(x_2)]$

Gluon Initiated Processes

More Complicated Processes

Increasing the number of particles in the final state increases the complexity of the correlators?

For example, look at DIS with one extra gluon:

Additional Gluons in Large-N_c Limit

Additional Gluons in Large-N_c Limit

- Leading contribution comes from attaching both gluon legs to the same fermion loop
- Adding a gluon to either a dipole or a quadrupole gives only dipoles and quadrupoles in the large-*N_c* limit
- In the large-*N_c* limit, the only correlators needed to describe production of an arbitrary number of particles are the dipole and the quadrupole

FD, C. Marquet, B. Xiao, In preparation

Conclusions

- The study of multi-particle production in asymmetric collisions can provide valuable information to determine the dynamics of the small-*x* degrees of freedom in nuclei
- The large-*N_c* limit greatly simplifies the description of such processes
- Further studies of the quadrupole amplitude are desirable
- Simplification of correlators in the large-N_c limit is not a property of the CGC set-up and can be generalized to other cases of particles scattering in a background field configuration