Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	000	

Electroweak Interaction, Hadrons and Semileptonic τ -Decay

Anja Habersetzer

with Francesco Giacosa und Dirk Rischke

Peniche, Excited QCD, Mai 8th, 2012

Introduction •••••	L σ M with Weak Interaction	Decay Widths and Effective Couplings 000	Spectral Densities	Conclusion and Outlook
Motiva	ation			

- QCD not analytically solvable, reduce complexity with hadronic models that apply the symmetries known from the QCD Lagrangian:
- au-decay involves strong and weak interactions
- τ spectral functions from ALEPH collaboration ALEPH Collaboration, S. Schael et al., Branching Ratios and Spectral Functions of Tau Decays: Final ALEPH measurements and physics implications, Phys.Rept. 421 (2005) 191284, [hep-ex/0506072]
- Determine effective electroweak interactions for hadronic degrees of freedom in the vacuum.
- Results can be used to perform calculations at nonzero temperature and density (e.g. dilepton decay rate).
- Understand the nature of resonances such as a_1 , e.g. $\bar{q}q$ or $\rho\pi$ -state?

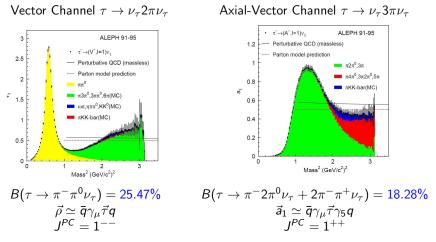
 Introduction
 $L\sigma M$ with Weak Interaction
 Decay Widths and Effective Co

 $0 \oplus 00$ $0 \oplus 000$ $0 \oplus 00$

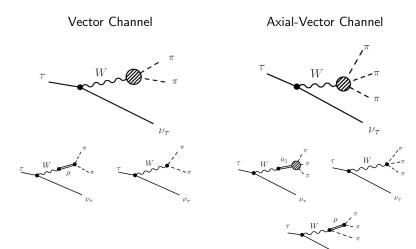
Spectral Densities

Conclusion and Outlook

ALEPH Inclusive Spectral Functions



Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	000	
au-Deca	ау			



 ν_{τ}

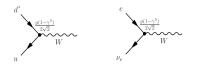
Introduction	LσM with Weak Interaction 000000	Decay Widths and Effective Couplings 000	Spectral Densities Conclusion and Outlook

What do we know about weak interaction?

- $SU(2)_L imes U(1)_Y$ gauge symmetry with gauge fields W^μ and B^μ
- Weinberg mixing between $SU(2)_L \times U(1)_Y$ gauge fields B^{μ}, W_3^{μ} to physical interaction fields A^{μ}, Z_0^{μ} .
- Cabibbo mixing, flavour eigenstates are not weak eigenstates.
- Charged interaction violates symmetry under Charge and Parity transformations but preserves combined CP;
 W^μ₊ act on left-handed particles, right-handed antiparticles only

$$P_L = \frac{1 - \gamma_5}{2} \qquad P_R = \frac{1 + \gamma_5}{2}$$

• Charged bosons induce flavour-changing processes.



Introduction	LσM with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	●00000	000	000	
Linear	Sigma Model			

- Hadronic degrees of freedom are the light $N_f = 2$ meson multiplets, represented by the matrix-valued fields Φ , L^{μ} , R^{μ} :
- Strong isospin algebra with generators

$$\begin{split} t_0 &= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad t_i = \frac{\sigma_i}{2}, \quad i = 1, 2, 3 \\ \Phi &= (\sigma + i\eta)t_0 + (\vec{a}_0 + i\vec{\pi})\vec{t}, \quad L^{\mu}(R^{\mu}) = (\omega^{\mu} \pm f_1^{\mu})t_0 + (\vec{\rho}^{\mu} \pm \vec{a}_1)\vec{t} \end{split}$$

• $\tau\text{-decay}$ can be calculated within Linear σ Model after including electroweak interactions

Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	00000	000	000	
Lagran	gian			

$$\mathscr{L}_{\mathsf{L}\sigma\mathsf{M}} = \operatorname{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] - m^{2}\operatorname{Tr}(\Phi^{\dagger}\Phi) - \lambda_{1}[\operatorname{Tr}(\Phi^{\dagger}\Phi)]^{2} - \lambda_{2}\operatorname{Tr}(\Phi^{\dagger}\Phi)^{2} - \frac{1}{4}\operatorname{Tr}[(L_{0}^{\mu\nu})^{2} + (R_{0}^{\mu\nu})^{2}] + \frac{m_{1}^{2}}{2}\operatorname{Tr}[(L^{\mu})^{2} + (R^{\mu})^{2}] + \operatorname{Tr}[H(\Phi + \Phi^{\dagger})] + c(\det \Phi + \det \Phi^{\dagger}) + \text{higher order couplings of } \Phi, L^{\mu}, R^{\mu}$$

$$D_{\mu}\Phi = \partial_{\mu}\Phi - ig_1(L_{\mu}\Phi - \Phi R_{\mu}) , \quad (L,R)_0^{\mu\nu} = \partial^{\mu}(L,R)^{\nu} - \partial^{\nu}(L,R)^{\mu}$$

1 Invariant under global $U(2)_L \times U(2)_R$ transformations

$$\Phi \rightarrow \Phi' = U_L \Phi U_R^{\dagger}$$

$$L^{\mu} \rightarrow L^{\mu \prime} = U_L L^{\mu} U_L^{\dagger}$$

$$R^{\mu} \rightarrow R^{\mu \prime} = U_R R^{\mu} U_R^{\dagger}$$

2 Symmetry is explicitly broken to $U(1)_V$, baryon number conservation.

Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and C
0000	00000	000	000	
-	-	– • • • •		

Spontaneous Symmetry Breaking and Mass Splitting

- ho and a_1 are chiral partners, $m_
 ho=0.7755~{
 m GeV}\,, m_{a_1}\simeq 1.23~{
 m GeV}$
- for m² < 0 we obtain infinite number of degenerate groundstates in the (pseudo-)scalar sector shifting σ → σ + φ₀ generates
 - i) mass difference between the chiral partners ρ and a_1 . $m_{\rho}^2 = m_1^2 + \frac{\phi_0^2}{2}(h_1 + h_2 + h_3)$, $m_{a_1}^2 = m_1^2 + (g_1\phi_0)^2 + \frac{\phi_0^2}{2}(h_1 + h_2 - h_3)$
 - ii) 3 point interaction vertices and mixing terms in $(D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi$ that are proportional to the VEV ϕ_0

Introduction 0000	LσM with Weak Interaction ○○●○○	Decay Widths and Effective Couplings 000	Spectral Densities	Conclusion and Outlook
$SU(2)_L$	$_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	nsformation		

- mesons are $\bar{q}q$ composite fields
 - a subject the composite quark fields to a $SU(2)_L \times U(1)_Y$ transformation
 - b apply Vector Meson Dominance and consider left-handed fields L_{μ} as left-handed hadronic vacuum fluctuations of W boson
- transformation laws

$$\begin{split} \Phi &\longrightarrow \Phi' &= U_L \Phi U_Y^{\dagger} \\ L^{\mu} &\longrightarrow L^{\mu'} &= U_L L^{\mu} U_L^{\dagger} , \\ R^{\mu} &\longrightarrow R^{\mu'} &= U_Y R^{\mu} U_Y^{\dagger} , \\ B^{\mu} &\longrightarrow B^{\mu'} &= U_Y B^{\mu} U_Y^{\dagger} + \frac{i}{g'} U_Y \partial^{\mu} U_Y^{\dagger} , \\ W^{\mu} &\longrightarrow W^{\mu'} &= U_L W^{\mu} U_L^{\dagger} + \frac{i}{g} U_L \partial^{\mu} U_L^{\dagger} . \end{split}$$

covariant derivative

$$D^{\mu}\Phi = \partial^{\mu}\Phi - ig_1(L^{\mu}\Phi - \Phi R^{\mu}) + ig'\Phi B^{\mu} - igW^{\mu}\Phi$$
.

Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings
0000	000000	000

Spectral Densities

Weinberg Mixing and Cabibbo Mixing

• neutral bare $SU(2)_L \times U(1)_Y$ gauge fields B^μ , W^μ_3 are related to the physical fields A^μ, Z^μ by

$$\begin{pmatrix} W_3^{\mu} \\ B^{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_W & \sin\theta_W \\ -\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} Z^{\mu} \\ A^{\mu} \end{pmatrix}$$

and

$$e = g' \cos \theta_W = g \sin \theta_W$$

- strong isospin eigenstates *d*, *s*, *b* are related to the weak eigenstates by the CKM matrix
- Cabibbo mixing

$$\begin{pmatrix} d'\\s' \end{pmatrix} = \begin{pmatrix} \cos\theta_C & \sin\theta_C\\ -\sin\theta_C & \cos\theta_C \end{pmatrix} \begin{pmatrix} d\\s \end{pmatrix}$$

Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outloo
0000	000000	000	000	

Covariant Derivative and Field Strength Tensors

 covariant derivative in terms of physical weak interaction fields and weak eigenstates

$$D^{\mu}\Phi = \partial^{\mu}\Phi - ig_1(L^{\mu}\Phi - \Phi R^{\mu}) - ig\cos\theta_C(W_1^{\mu}t_1 + W_2^{\mu}t_2)\Phi$$
$$-ieA^{\mu}[t_3, \Phi] - ig\cos\theta_W(Z^{\mu}\Phi + \tan^2\theta_W\Phi Z^{\mu})$$

• also redefinition of the field strength tensors for left- and right-handed fields

$$L^{\mu\nu} = \frac{i}{g} \left(\partial^{\mu} L^{\nu} - ig[W^{\mu}, L^{\nu}] - \partial^{\nu} L^{\mu} + ig[W^{\nu}, L^{\mu}] \right)$$

• chirally invariant term that generates W- ρ mixing

$$\mathscr{L}_{W
ho} = rac{\delta}{2} g \cos heta_C \operatorname{Tr}[W_{\mu
u} L^{\mu
u}]$$

with

$$W^{\mu\nu} = \partial_{\mu}W^{\nu} - \partial_{\nu}W^{\mu} - ig[W^{\mu}, W^{\nu}]$$

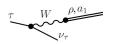
Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	●00	000	

Lagrangian with weak interaction

$$\mathscr{L}_{L\sigma Mew} = \operatorname{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] + \frac{1}{4}\operatorname{Tr}[(L^{\mu\nu})^{2}] + \frac{\delta}{2}g\cos\theta_{C}\operatorname{Tr}[W_{\mu\nu}L^{\mu\nu}] + \frac{g}{2\sqrt{2}}\left(W_{\mu}^{-}\bar{u}_{\nu_{\tau}}\gamma_{\mu}(1-\gamma_{5})u_{\tau} + \text{h.c.}\right)$$

from local $SU(2)_L \times U(1)_Y$ symmetry generates W- ρ -mixing and also contribution to W- a_1 -mixing from Glashow-Salam-Weinberg Model of electroweak interaction





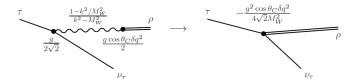
exchanged momenta small compared to \boldsymbol{W} mass Fermi coupling constant

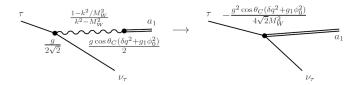
 $G_F = \frac{g}{2\sqrt{2}M_W^2}$

Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	000	
Effect	iva Couplinga			

Effective Couplings

$$W\rho: \quad \frac{g\cos\theta_c}{2} \, \delta s \, W^-_\mu \rho^{\mu+} + \text{ h.c.} \\Wa_1: \quad \frac{g\cos\theta_c}{2} \, (\delta s - g_1\phi_0^2)W^-_\mu a_1^{\mu+} + h.c.$$





Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	000	

• Decay rates of au to ho and a_1

$$\Gamma_{ au o
ho
u_{ au}}(s), \quad \Gamma_{ au o a_1
u_{ au}}(s).$$

• Spectral densities (in a form suitable to compare to ALEPH data)

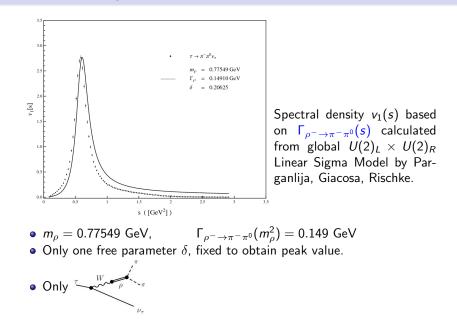
$$v_1(s) = C_A \ (\delta s)^2 \ \frac{\rho_V(s)}{s}$$
$$a_1(s) = C_V \ (\delta s - g_1 \phi_0^2)^2 \ \frac{\rho_A(s)}{s}$$

• Chiral condensate is related to the pion renormalisation constant Z and the pion vacuum decay constant f_{π} as

$$\phi_0 = Z f_\pi \, .$$

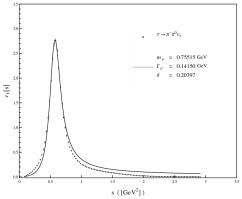
Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	•00	

Vectorchannel Spectral Function



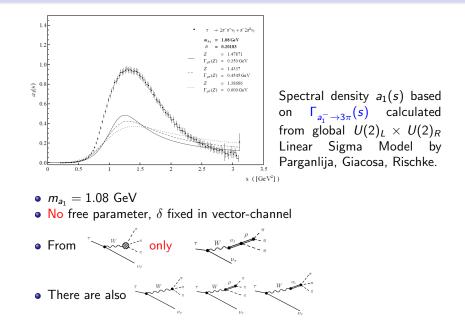
Introduction 0000	LσM with Weak Interaction 000000	Decay Widths and Effective Couplings 000	Spectral Densities ○●○	Conclusion and Outlook	
Fitted	Parameters				

Improve agreement by refitting ρ mass and width: $\delta = 0.20397$, $m_{\rho} = 0.75515$ GeV, $\Gamma_{\rho^- \rightarrow \pi^- \pi^0}(m_{\rho}) = 0.1415$ GeV



Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and
0000	000000	000	00●	

Axial-Vector Spectral Density



Introduction 0000	L M with Weak Interaction	Decay Widths and Effective Couplings 000	Spectral Densities	Conclusion and Outlook
Conclu	ision and Outl	ook		

- Vector Spectral Density is well described with weak hadron-coupling $\delta \approx 0.2$ within the global $U(2)_L \times U(2)_R$ Linear Sigma Model.
- Consider other contributions to Axial-Vector Spectral Density:
 - δ may in fact be larger due to destructive interference effects from additional contributions in the vectorchannel, that will be considered.
 - other contributions in the axial-vector channel that are not included yet.
- After fixing the parameters:
 - calculate dilepton decay rate within $L\sigma M$.
 - go to $N_f = 3$ and calculate $K \rightarrow 2\pi$ and $K \rightarrow 3\pi$ to study parity-violating effects.

Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	000	

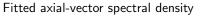
The *s*-dependent Decay Widths

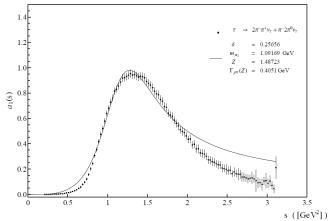
•
$$\Gamma_{\rho^- \to \pi^- \pi^0}(s)$$
:
 $\Gamma_{\rho^- \to \pi^- \pi^0}(s) = \frac{m_{\rho}^5}{48\pi m_{a_1}^4} \left[1 - \left(\frac{2m_{\pi}}{\sqrt{s}}\right)^2 \right]^{\frac{3}{2}} \left[g_1 Z^2 + \frac{g_2}{2} (1 - Z^2) \right]^2$
 $v_1(s) = \frac{(2\pi)^2}{NS_{EW}} (\delta s)^2 \frac{1}{s} \frac{\sqrt{s} \Gamma_{\rho^- \to \pi^- \pi^0}(s)}{(s - m_{\rho}^2)^2 + (\sqrt{s} \Gamma_{\rho^- \to \pi^- \pi^0}(s))^2}$
• $\Gamma_{a_1 \to \rho \pi}(s)$:
 $\Gamma_{a_1 \to \rho \pi}(s) = \frac{k(\sqrt{s}, m_{\rho}, m_{\pi})}{12\pi m_{a_1}^2} \left[h_{\mu\nu}^2 - \frac{(h_{\mu\nu} K_1^{\nu})^2}{m_{\rho}^2} - \frac{(h_{\mu\nu} P^{\mu})^2}{m_{a_1}^2} + \frac{(h_{\mu\nu} P^{\mu} K_1^{\nu})^2}{m_{\rho}^2 m_{a_1}^2} \right]$
 $a_1(s) = \frac{(2\pi)^2}{NS_{EW}} (\delta s + g_1 \phi_0^2)^2 \frac{1}{s} \frac{\sqrt{s} \Gamma_{a_1 \to \rho \pi}(s)}{(s - m_{a_1}^2)^2 + (\sqrt{s} \Gamma_{a_1 \to \rho \pi}(s))^2}$

 $\Gamma_{\rho^- \to \pi^- \pi^0}(s)$ and $\Gamma_{a_1 \to \rho \pi}(s)$ calculated from global $U(2)_L \times U(2)_R$ Linear Sigma Model in D. Parganlija, F. Giacosa, and D. H. Rischke, Vacuum Properties of Mesons in a Linear Sigma Model with Vector Mesons and Global Chiral Invariance, Phys. Rev. D82 (2010) 054024, [arXiv:1003.4934]

Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	000	

Axial-Vector Spectral Density





Introduction	$L\sigma M$ with Weak Interaction	Decay Widths and Effective Couplings	Spectral Densities	Conclusion and Outlook
0000	000000	000	000	

Representation of the Fields

S scalar, P pseudoscalar:

$$\Phi = \sum_{a=0}^{3} (S_a + iP_a) t_a \left(\sim \sqrt{2} \sum_{a=0}^{3} (\bar{q}t_a q + \bar{q}t_a \gamma_5 q) t_a \right)$$
$$= \frac{1}{2} \begin{pmatrix} \sigma + a_0^0 + i(\eta + \pi^0) & a_0^+ + i\pi^+ \\ a_0^- + i\pi^- & \sigma - a_0^0 + i(\eta - \pi^0) \end{pmatrix}$$

 \mathbf{V}_{μ} vector, \mathbf{A}_{μ} axialvector:

$$(L,R)_{\mu} = \sum_{a=0}^{3} (V_{\mu}^{a} \pm A_{\mu}^{a}) t_{a} \left(\sim \sqrt{2} \sum_{a=0}^{3} (\bar{q}\gamma_{\mu} t_{a}q \pm \bar{q}t_{a}\gamma_{\mu}\gamma_{5}q) t_{a} \right)$$
$$= \frac{1}{2} \begin{pmatrix} (\omega_{\mu} + \rho_{\mu}^{0}) \pm (f_{1\mu} + a_{1\mu}^{0}) & \rho_{\mu}^{+} \pm a_{1\mu}^{+} \\ \rho_{\mu}^{-} \pm a_{1\mu}^{-} & (\omega_{\mu} - \rho_{\mu}^{0}) \pm (f_{1\mu} - a_{1\mu}^{0}) \end{pmatrix}$$