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Introduction:; AdS/CFT

AdS/CFT:

strongly coupled gauge theomny 4D flat space described in terms of
a dualgravitational theoryn (4+n)D curved space (typically

Involving Anti-de Sitter for conformal or asymptoticallpaformal
theories).
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Introduction:; AdS/CFT

AdS/CFT:

strongly coupled gauge theomny 4D flat space described in terms of
a dualgravitational theoryn (4+n)D curved space (typically
Involving Anti-de Sitter for conformal or asymptoticallpaformal
theories).

Application to QCD: Properties afeconfined QGIln terms of a5D
black hole in AdS.

Holographic calculation 0717/8 Policastro, Son, Starinets, '01
QGP ThermodynamiasUrsoy, Kiritsis, Mazzanti, FN, '09

Holographic Langevin dynamics for the diffusion of a heavy
quark & Jet-Quenching parameter).

This talk: I will review aspects of the Langevin dynamics, and show
how it can be computed holographically in a generic setup.
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Introduction: Generalized Langevin Process

The diffusion of a Heavy quark through a deconfined plas@a
dissipative process that can be described bygreeralized Langevin
process

OE /+OO dt' Gr(t — X)) + £(t)

— 00
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G r(7): Retarded Green’s function of a certain plasma operator.

¢(t) Gaussian noise with variance,,,,,(7): (symmetric
Green’s function of the same operator).
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Introduction: Generalized Langevin Process

The diffusion of a Heavy quark through a deconfined plasa
dissipative process that can be described bygreeralized Langevin
process

OE /+OO dt' Gr(t —tHhX (") + £(t)

— 00

G r(7): Retarded Green’s function of a certain plasma operator.

¢(t) Gaussian noise with variance,,;,,,(7): (symmetric
Green’s function of the same operator).

In a certain long-time limit, full correlators can be reddy
one transport coefficienrelated to the jet-quenching parameter,
entering a_ocal Langevin equation

Gr(7) andGg,,, (7) can be computedolographically.This
Involves adressing procedure to cure UV problems.
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Generalized Langevin Process

The motion of a heavy quark through the QCD plasma can be
described by an effective action obtained by integratingios
plasma degrees of freedom, including a coupling to the
Instantaneous forcé (¢) acting on the quark:

etSes s 1X (1) <€z' J th<t>f<t>>
Plasma QFT
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etSes s 1X (1) <€z' J th<t>f<t>>
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Sefr|X] Is a non-local action which depends on the correlators of
the operatorF(¢):
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Holoaranhv and the Generalized L anaevin Process



Generalized Langevin Process

The motion of a heavy quark through the QCD plasma can be
described by an effective action obtained by integratingios
plasma degrees of freedom, including a coupling to the
Instantaneous forcé (¢) acting on the quark:

etSes s 1X (1) <€z' J th<t>f<t>>
Plasma QFT

Sefr|X] Is a non-local action which depends on the correlators of
the operatorF(¢):

Gr(t) = —i0(t) { [F), FO)]), Gaym(t) = —% ({F(t), F(O)) ).

These correlators can be computed holographycally, once we
identify the bulk field dual to the operatd(¢)
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Dispersion Relations

The equation of motion is in Fourier space:

~M,w? X(0) = GRW)X(W) + W) (E()) = Coym()
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Dispersion Relations

The equation of motion is in Fourier space:

~Myo? X() = GR)X (@) + 6) () = Coym(w)

Dispersion relations allow to writ€'z(w) in terms of the
spectral density p(w) = —Im Gg/m.
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Dispersion Relations

The equation of motion is in Fourier space:

~Myw? X(w) = GrW)X (W) +€(w)  (£*(w)) = Gaym(w)

Dispersion relations allow to writ€'z(w) in terms of the
spectral density p(w) = —Im Gg/m.

Gsym(w) Mmay be obtained fronim G r(w) once the density
matrix of the plasma is known.
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The equation of motion is in Fourier space:

~Myw? X(w) = GrW)X (W) +€(w)  (£*(w)) = Gaym(w)

Dispersion relations allow to writ€'z(w) in terms of the
spectral density p(w) = —Im Gg/m.

Gsym(w) Mmay be obtained fronim G r(w) once the density
matrix of the plasma is known.

The Fourier integrals exist ifm Gr(w) has a slow enough
behavior at large: Im Gr — 0 faster enough as — oc.

If this does not happen, the process is dominated by wild
random kicks at short time separation.
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Dispersion Relations

The equation of motion is in Fourier space:

—Myo? X(w) = Grw) X (@) +£w) () = Goym(®)

Dispersion relations allow to writ€'z(w) in terms of the
spectral density p(w) = —Im Gg/m.

Gsym(w) Mmay be obtained fronim G r(w) once the density
matrix of the plasma is known.

The Fourier integrals exist ifm Gr(w) has a slow enough
behavior at large: Im Gr — 0 faster enough as — oc.

If this does not happen, the process is dominated by wild
random kicks at short time separation.

The“bare” holographic spectral densifynG r(w) ~ w? in the
UV. = this cannot be the actual physical quantity.
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Recovering Local Langevin process

E@ER)) = Gaym(t, 1),
V(') = Gasym(t')

Gaym(t) = —t({F (), F(0)}),  Gasym(t) = —i([F(¢), F(0)]).

M, X+ / i dt' v(t) X (t—t") = £(t)) {
0
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Recovering Local Langevin process

E@)ER) = Gaym (L, 1),
F(t') = Gasym(t')

Gsym(t) = —i({F (), F(0)}),  Gasym(t) = —i([F(2), F(0)]).

MqX+/O dt' vt X (t—t") = £(t)) {

Supposeé > 7. (autocorrelation time of the forc€;r ~ 0 att > 7.)

ImGR(w)

w w—0

+00 ) . +00
/ dt' yXt—-t)=nX(Et) n= / dt’ v(t') = —
0 0
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Recovering Local Langevin process

E@ER)) = Gaym(t, 1),
V(') = Gasym(t')

Gsym(t) = —i({F (), F(0)}),  Gasym(t) = —i([F(2), F(0)]).

MqX+/O dt' vt X (t—t") = £(t)) {

Supposeé > 7. (autocorrelation time of the forc€;r ~ 0 att > 7.)

ImGR(w)

W |w—>0

+00 ) . +00
/ dt' )Xt -t =nX{Et) n= / dt' v(t') = —
0 0

+00
Gopmlt — ) = kSt —1), K= / 0t Gy (1) = Claym ()]
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Recovering Local Langevin process

M [ a3t = ) {253;2 (%?ﬁw»

Gsym(t) = —i({F (), F(0)}),  Gasym(t) = —i([F(2), F(0)]).

Suppose > 7. (autocorrelation time of the forcél; ~ 0 att > 7.)

/ i () = - ImOR©)
0)

W )w—>0

/ T WA X () = X (D)
0]

+00
Gopmlt — ) = K8t —1), & / 0t Cy(t) = Gl ()

M X = —nX(5) + (1), (EDEW)) = r(t, 1)

— Standard Langevin equation with white noise for= 1/, X.
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Recovering Local Langevin process

E@)ER) = Gaym (L, 1),
F(t') = Gasym(t')

Gsym(t) = —i({F (1), F(0)}),  Gasym(t) = —i{[F(t), F(0)]).

Mq)'é+/+oo dt' v(t) X (t—t") = £(t)) {
0

Suppose > 7. (autocorrelation time of the forcél; ~ 0 att > 7.)

ImGR(w)

W ’w—>0

+00 ) . +00
/ d ()X (E—t) = nX(6) n= / dt' (1) = —
0] 0

+00
Gopmlt — 1) = k6t —1), 1= / Gy (1) = Gy ()

M X = —nX(5) + (1), (EDEW)) = r(t, 1)

— Standard Langevin equation with white noise for= 1/, X.
The viscous friction; and diffusion coefficient are the
low-frequency limit of the Langevin Green’s functions.
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Transvers Momentum Bro
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Transvers Momentum Broadening
p=—npp(t) + (1), (E@)ER)) = rd(t — 1)

Long times(t > 1/np):  (p) — 0, ((Ap)?) — /20D
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Transvers Momentum Broadening
p=—npp(t) + &), E@)ER)) = ro(t — ')

Long times( ¢ > 1/np):  (p) — 0, ((Ap)?) — k/2np
Shorttimeq t < 1/np):  (p) ~ po, ((Ap)?) ~ Kt
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Transvers Momentum Broadening
p=—npp(t) +£&(1), E@)E[R)) = rd(t —t)

Long times(¢ > 1/np):  (p) — 0, ((Ap)?) — &/2np
Shorttimeq ¢t < 1/np):  (p) ~ po, ((Ap)?) ~ Kt

Transverse momentum obeys a Langevin processwith= 0, but

with an increasing dispersion pf-:
<

((p)?) ~ 26"t
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Transvers Momentum Broadening
p=—npp(t) +£&(1), E@)E[R)) = rd(t —t)

Long times(¢ > 1/np):  (p) — 0, ((Ap)?) — &/2np
Shorttimeq ¢t < 1/np):  (p) ~ po, ((Ap)?) ~ Kt

Transverse momentum obeys a Langevin processwith= 0, but
with an increasing dispersion pf-:
<
Define thg et quenching parameter
() @) s

— — 9
mean freepath vt v

((p)?) ~ 26"t

q
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AdS/CFT Correlators

The 4D theory “lives” on the /
boundaryof a (4 +n)D curved

bulk space-time with some /
fields®(x, r)
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AdS/CFT Correlators

The 4D theory “lives” on the 4
boundaryof a (4 +n)D curved
bulk space-time with some
fields®(x, r)

T —

Bulk fields®(z, ) couple to boundary operatofyx) as

S /d4a: ®(x,0)0(x)
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AdS/CFT Correlators

The 4D theory “lives” on the 4
boundaryof a (4 +n)D curved
bulk space-time with some
fields®(z, r)

T —

Bulk fields®(z, ) couple to boundary operatofyx) as
Scoupling — /d433(1)(33, O)O(.CE)

Close to the boundary (in 4-momentum space):

®(p,r) = Alp)r* 2+ B(p)r™, r—0,  A=dim[O]
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AdS/CFT Correlators

The 4D theory “lives” on the 4
boundaryof a (4 +n)D curved
bulk space-time with some
fields®(z, r)

T —

Bulk fields®(z, ) couple to boundary operatofyx) as
Scoupling — /d433(1)(33, O)O(.CE)

Close to the boundary (in 4-momentum space):

®(p,r) = Alp)r* 2+ B(p)r™, r—0,  A=dim[O]

The 2-point function fop is:

(O(p)O(—p)) ~ B(p)/A(p).
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5D Holographic setup

We consider a generigD black holebackground

2 2 dr? 2 i
ds” = b=(r) ) f(r)dt* + dz'dz;
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5D Holographic setup

We consider a generigD black holebackground

2 2 dr? 2 i
ds” = b=(r) ) f(r)dt* + dz'dz;

Boundary:

4
r—0, f(r)—1 logb(r)~log— + sub.
r
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5D Holographic setup

We consider a generigD black holebackground

2 2 dr? 2 i
ds” = b=(r) ) f(r)dt* + dz'dz;

Boundary:

4
r—0, f(r)—1 logb(r)~log— + sub.
r

Horizon:

r— Th, f(rn) =0, Ty, = f(rp) /4

Holoaranhv and the Generalized L anaevin Process



5D Holographic setup

We consider a generigD black holebackground

2 2 dr? 2 i
ds” = b=(r) ) f(r)dt* + dz'dz;

Boundary:

4
r—0, f(r)—1 logb(r)~log— + sub.
r

Horizon:

r— Th, f(rn) =0, Ty, = f(rp) /4

Dual to anon-conformapgauge theory in thermal equilbriuat
a temperaturé@y,, in adeconfined phase.
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Trailing string

Holographic description of a heavy quadkibser 2006}

0

String attached at thad.S boundary and trailing in the interior,
described by the embedding:

X(t,r)= (vt +&(r)%,  £0)=0

/ dtdr+/det §

boundan

. SNG = —
Y NG 27 (2

worldsheet horizo

U
U

X V4
BFihonzor/’
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Trailing string

Holographic description of a heavy quadkibser 2006}

0

String attached at thad.S boundary and trailing in the interior,
described by the embedding:

X(t,r)= (vt +&(r)%,  £0)=0
/dtdm/detﬁ

The induced worldsheet metric
dqp 1S @2D black hole:

boundan

- SNG = —
Y NG 27 (2

w.S. horizonr, where
) BEETERINEAD frs) = v?

U
U

BH horizor / W.S. temperaturé@; < Tj,.
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Trailing string

Holographic description of a heavy quadkibser 2006}

0

String attached at thad.S boundary and trailing in the interior,
described by the embedding:

X(t,r) = (vt +£(r)2,

boundan

worldsheet horizo

U
U

X V4
BH horizor /

£(0) =0
1 -
_27r€§ /dtdr\/detg

The induced worldsheet metric
dqp 1S @2D black hole:

SNG =

W.S. horizonr, where

frs) = v?,

W.S. temperatur@“s < Ty,.
Pure AdSTs = Ty, /\/7, v = 1/V1 —v?
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Trailing string fluctuations

Now consider fluctuations around the trailing string sauofi

—

X(t,r) = (vt+ §(r))% 46X (r 1)
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Trailing string fluctuations

Now consider fluctuations around the trailing string sauofi

—

X(t,r) = (vt+ f(r))% + 56X (r,t)

Recall the boundary coupling:

Sbar = /thi(t)]'—i(t) ~ SI())dr -+ /5Xi(0,t)fi(t)
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Trailing string fluctuations

Now consider fluctuations around the trailing string sauofi

—

X(t,r) = (vt+ f(r))% + 56X (r,t)

Recall the boundary coupling:
S, — / X () Fo(t) ~ S0, + / 5X(0, £)Fo(1)
5)?(73 t) Is the bulk field dual to the boundary operator

— According to the AdS/CFT prescriptiamrrelators ofF are
obtained from the solutions of the wave equations&i(r, ¢)
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Retarded Correlator

Expanding the trailing string action to quadratic order In
U(r,t) = {6X*, 06X} one finds the wave equation:

Ou, (Ho‘ﬁ(r)ag \Il) =0 o, =rt

HP(r) determined by the background-), f(r).
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Retarded Correlator

Expanding the trailing string action to quadratic order In
U(r,t) = {6X*, 06X} one finds the wave equation:

Oa (Ho‘ﬁ(r)ag \If> =0 a,B=r1t
HP(r) determined by the background-), f(r).
Prescription for the real-time retarded propagatar + starinets, '02)

GR(W) =H"“ ‘I’E(Tv w) 80‘ \IJR(T’ w) Boundary

Ui (r,w) IS the solution with boundary conditions:

LW

\PR(Oaw) = 1, \IJR(T7CU) ~ (’)“S — 7“)_47rTS’ r o~ T,
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Diffusion coefficient

In the zero-frequency limitve get thediffusion coefficients:

1 S 1 1
— —A
"l 22’ " s']

Holoaranhv and the Generalized Lanoevin Process



Diffusion coefficient

In the zero-frequency limitve get thediffusion coefficients:

1 S 1 1
— —A
"l 22’ " s']

Is this enough to describe quark diffusion?
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Diffusion coefficient

In the zero-frequency limitve get thediffusion coefficients:

1L S 1L 1L
_ — 2T,
77 22’ " {
Is this enough to describe quark diffusion?

Thelocal approximation of the full generalized Langevin
requires we are in Bong time regime, where only low
frequencies are relevant:

Holoaranhv and the Generalized Lanoevin Process



Diffusion coefficient

In the zero-frequency limitve get thediffusion coefficients:

1 S 1 1
— —A
"l 22’ " s']

Is this enough to describe quark diffusion?

Thelocal approximation of the full generalized Langevin
requires we are in Bong time regime, where only low
frequencies are relevant:

Consistent only if the relaxation time of the procéss)p) Is
much slower than the correlation tinie. ~ 1/7%) of Gr(t)
(effectivelyGRr(t) ~ 6(t)).
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Validity of the local approximation

The local Langevin description is valid if
1/77D > 1/Ts

If this fails, need théull ¢-dependencef the Langevin correlators.
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Validity of the local approximation

The local Langevin description is valid if
1/77D > 1/Ts

If this fails, need théull ¢-dependencef the Langevin correlators.

This Is the case e.g. in the bottom up Improved Holographi®QC
modelcursoy,Kiritsis,FN'09 ForT" > 27T, the local approximation breaks
down for charm quark withp > 20GeV..
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Validity of the local approximation

The local Langevin description is valid if

1/77D > 1/Ts

If this fails, need théull ¢-dependencef the Langevin correlators.

This is the case e.g. in the bottom up Improved Holographi®©QC
modelcursoy,Kiritsis,FN'09 ForT" > 27T, the local approximation breaks
down for charm quark withp > 20GeV..

No prolbem: The holographic computation gives the ull(t — ).
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Validity of the local approximation

The local Langevin description is valid if

1/77D > 1/Ts

If this fails, need théull ¢-dependencef the Langevin correlators.

This Is the case e.g. in the bottom up Improved Holographi®QC
modelcursoy,Kiritsis,FN'09 ForT" > 27T, the local approximation breaks
down for charm quark withp > 20GeV..

No prolbem: The holographic computation gives the ull(t — ).

Not so fast...
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UV behavoir of the full correlator

Can we use this correlator in physical situations to analgee
dynamics?
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UV behavoir of the full correlator

Can we use this correlator in physical situations to analgee
dynamics?

Look at thelargew limit. It can be computed analytically in a
WKB approximation, in the regimer,y > 1:

(> V2 4
ImGRr(w) ~ s 73 w3 h (W) b(r) ~ ;h(r), r— 0

S
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UV behavoir of the full correlator

Can we use this correlator in physical situations to analgee
dynamics?

Look at thelargew limit. It can be computed analytically in a
WKB approximation, in the regimer,y > 1:

(> V2 4
ImGRr(w) ~ s v3 w3 h (W) b(r) ~ ;h(r), r—0

S

This behavior is too strong far ; to be physical.
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UV behavoir of the full correlator

Can we use this correlator in physical situations to analgee
dynamics?

Look at thelargew limit. It can be computed analytically in a
WKB approximation, in the regimer,y > 1:

(> V2 4
ImGRr(w) ~ s v3 w3 h (W) b(r) ~ ;h(r), r—0

S

This behavior is too strong far ; to be physical.
Remark: the leading behaviortismperature-independent.
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Dressed Correlators

Proposal to have UV-safe spectral densit@sotract the correlator
obtain from the vacuum backgrounah black hole f(r) = 1.

GO (W) = Gr(w) — G¥*) (w)
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Dressed Correlators

Proposal to have UV-safe spectral densit@sotract the correlator
obtain from the vacuum backgrounah black hole f(r) = 1.

G (W) = Grlw) — GV (w)

Physically, equivalent to requiring that a quark in vacusm |
subject to no dissipation.

Trailing string in the vacuuni(r) = 1: straight line starting at
the boundary: = 0 and stretching to- — ~c.
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Dressed Correlators

Proposal to have UV-safe spectral densitesotract the correlator
obtain from the vacuum backgrounah black hole f(r) = 1.

G (w) = Gr(w) — GV (w)

Physically, equivalent to requiring that a quark in vacusm |
subject to no dissipation.

Trailing string in the vacuuni(r) = 1: straight line starting at
the boundary: = 0 and stretching to- — ~c.

The leading)(w?) and subleadin@ (w) terms cancel exactly.
G%h(w) ~ 1/w W — 00

Dispersion relations safe, FT exists, short-time limituieg
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Subtracted correlator

G%h(w) ~1/w W — 00

Peak atu, ~ (vrs) ' =T, = 71.~1/T,
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Zero-frequency limit reloaded

One must check that the dressed correlator leads to the same
diffusion coefficients at low frequency.
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diffusion coefficients at low frequency.

True for all holographic models that anen-confiningn
vacuum(b(r) — 0 asr — o)
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Zero-frequency limit reloaded

One must check that the dressed correlator leads to the same
diffusion coefficients at low frequency.

True for all holographic models that anen-confiningn
vacuum(b(r) — 0 asr — o)

For confining backgrounds) has a minimum at some, and
b(r) — oo at eitherr — oo orr — rypg.

In this case the vacuum Langevin coefficienterges!
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Zero-frequency limit reloaded

One must check that the dressed correlator leads to the same
diffusion coefficients at low frequency.

True for all holographic models that anen-confiningn
vacuum(b(r) — 0 asr — o)

For confining backgrounds) has a minimum at some, and
b(r) — oo at eitherr — oo orr — rypg.

In this case the vacuum Langevin coefficienterges!

Resolution: the straight string it the minimal embedding In

the confining vacuum(Work in progress with E. Kiritsis and
L.Mazzanti)
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Outlook

We obtained a prescription to computteysicalcorrelators for
the Generalized Langevin process of a heavy quark in the
plasma in the AdS/CFT approach.

For non-confining background this does not affect the
zero-frequency limit.

More work needed to obtain fully consistent correlatorsm t
physically interesting case (confining backgrounds).

Ultimate goal:use correlators in numerical simulation of the
LHC plasma and compare results to experiment.
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