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Introduction: AdS/CFT

AdS/CFT:

strongly coupled gauge theoryin 4D flat space described in terms of
a dualgravitational theoryin (4+n)D curved space (typically
involving Anti-de Sitter for conformal or asymptotically conformal
theories).
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AdS/CFT:

strongly coupled gauge theoryin 4D flat space described in terms of
a dualgravitational theoryin (4+n)D curved space (typically
involving Anti-de Sitter for conformal or asymptotically conformal
theories).
Application to QCD: Properties ofdeconfined QGPin terms of a5D
black hole in AdS.

• Holographic calculation ofη/s Policastro, Son, Starinets, ’01

• QGP ThermodynamicsGursoy, Kiritsis, Mazzanti, FN, ’09

• Holographic Langevin dynamics for the diffusion of a heavy
quark (⇒ Jet-Quenching parameter).

This talk: I will review aspects of the Langevin dynamics, and show
how it can be computed holographically in a generic setup.
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Introduction: Generalized Langevin Process

The diffusion of a Heavy quark through a deconfined plasmais a
dissipative process that can be described by ageneralized Langevin
process:

Ẍ(t) =

∫ +∞

−∞
dt′ GR(t − t′)X(t′) + ξ(t)
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The diffusion of a Heavy quark through a deconfined plasmais a
dissipative process that can be described by ageneralized Langevin
process:

Ẍ(t) =

∫ +∞

−∞
dt′ GR(t − t′)X(t′) + ξ(t)

• GR(τ): Retarded Green’s function of a certain plasma operator.

• ξ(t) Gaussian noise with varianceGsym(τ): (symmetric
Green’s function of the same operator).

• in a certain long-time limit, full correlators can be replaced by
one transport coefficient, related to the jet-quenching parameter,
entering aLocal Langevin equation

• GR(τ) andGsym(τ) can be computedholographically.This
involves adressing procedure to cure UV problems.

Holography and the Generalized Langevin Process – p. 3



Generalized Langevin Process

The motion of a heavy quark through the QCD plasma can be
described by an effective action obtained by integrating out the
plasma degrees of freedom, including a coupling to the
instantaneous forceF(t) acting on the quark:

eiSeff [X(t)] =
〈

ei
R

dt X(t)F(t)
〉

Plasma QFT
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〈
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R
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the operatorF(t):
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Generalized Langevin Process

The motion of a heavy quark through the QCD plasma can be
described by an effective action obtained by integrating out the
plasma degrees of freedom, including a coupling to the
instantaneous forceF(t) acting on the quark:

eiSeff [X(t)] =
〈

ei
R

dt X(t)F(t)
〉

Plasma QFT

Seff [X] is a non-local action which depends on the correlators of
the operatorF(t):

GR(t) = −iθ(t)
〈 [

F(t),F(0)
] 〉

, Gsym(t) = − i

2

〈 {

F(t),F(0)
} 〉

,

These correlators can be computed holographycally, once we
identify the bulk field dual to the operatorF(t)
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Dispersion Relations

The equation of motion is in Fourier space:

−Mq ω2 X(ω) = GR(ω)X(ω) + ξ(ω) 〈ξ2(ω)〉 = Gsym(ω)
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Dispersion Relations

The equation of motion is in Fourier space:

−Mq ω2 X(ω) = GR(ω)X(ω) + ξ(ω) 〈ξ2(ω)〉 = Gsym(ω)

• Dispersion relations allow to writeGR(ω) in terms of the
spectral density ρ(ω) = −Im GR/π.

• Gsym(ω) may be obtained fromIm GR(ω) once the density
matrix of the plasma is known.

• The Fourier integrals exist ifIm GR(ω) has a slow enough
behavior at largeω: Im GR → 0 faster enough asω → ∞.

• If this does not happen, the process is dominated by wild
random kicks at short time separation.

• The“bare” holographic spectral densityImGR(ω) ∼ ω3 in the
UV. ⇒ this cannot be the actual physical quantity.
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Recovering Local Langevin process

MqẌ+

∫ +∞

0
dt′ γ(t′)Ẋ(t−t′) = ξ(t′)

{

〈ξ(t)ξ(t′)〉 = Gsym(t, t′),

γ̇(t′) ≡ Gasym(t′)

Gsym(t) = −i〈{F(t),F(0)}〉, Gasym(t) = −i〈[F(t),F(0)]〉.
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Recovering Local Langevin process

MqẌ+

∫ +∞

0
dt′ γ(t′)Ẋ(t−t′) = ξ(t′)

{

〈ξ(t)ξ(t′)〉 = Gsym(t, t′),

γ̇(t′) ≡ Gasym(t′)

Gsym(t) = −i〈{F(t),F(0)}〉, Gasym(t) = −i〈[F(t),F(0)]〉.

Supposet ≫ τc (autocorrelation time of the force,GR ∼ 0 at t > τc)

∫ +∞

0
dt′ γ(t′)Ẋ(t − t′) ⇒ η Ẋ(t) η ≡

∫ +∞

0
dt′ γ(t′) = −ImGR(ω)

ω

∣

∣

∣

ω→0
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∣

∣

∣

ω→0

Gsym(t − t′) ⇒ κ δ(t − t′), κ ≡
∫ +∞

−∞
dt Gsym(t) = Gsym(ω)

∣

∣

∣

ω→0
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∣

∣
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MqẌ = −ηẊ(t) + ξ(t), 〈ξ(t)ξ(t′)〉 = κ δ(t, t′)

⇒ Standard Langevin equation with white noise forP = MqẊ.
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∫ +∞

0
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ω

∣
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Gsym(t − t′) ⇒ κ δ(t − t′), κ ≡
∫ +∞

−∞
dt Gsym(t) = Gsym(ω)

∣

∣

∣

ω→0

MqẌ = −ηẊ(t) + ξ(t), 〈ξ(t)ξ(t′)〉 = κ δ(t, t′)

⇒ Standard Langevin equation with white noise forP = MqẊ.
The viscous frictionη and diffusion coefficientκ are the
low-frequency limit of the Langevin Green’s functions.
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Transvers Momentum Broadening

ṗ = −ηD p(t) + ξ(t), 〈ξ(t)ξ(t′)〉 = κδ(t − t′)

0
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Transvers Momentum Broadening

ṗ = −ηD p(t) + ξ(t), 〈ξ(t)ξ(t′)〉 = κδ(t − t′)

• Long times( t ≫ 1/ηD): 〈p〉 → 0, 〈(∆p)2〉 → κ/2ηD

• Short times( t ≪ 1/ηD): 〈p〉 ∼ p0, 〈(∆p)2〉 ∼ κ t

Transverse momentum obeys a Langevin process with〈p⊥〉 = 0, but
with an increasing dispersion ofp⊥:

〈(p⊥)2〉 ∼ 2κ⊥ t p0 Dp
¦

2
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Transvers Momentum Broadening

ṗ = −ηD p(t) + ξ(t), 〈ξ(t)ξ(t′)〉 = κδ(t − t′)

• Long times( t ≫ 1/ηD): 〈p〉 → 0, 〈(∆p)2〉 → κ/2ηD

• Short times( t ≪ 1/ηD): 〈p〉 ∼ p0, 〈(∆p)2〉 ∼ κ t

Transverse momentum obeys a Langevin process with〈p⊥〉 = 0, but
with an increasing dispersion ofp⊥:

〈(p⊥)2〉 ∼ 2κ⊥ t p0 Dp
¦

2

Define thejet quenching parameter

q̂ ≡ 〈(p⊥)2〉
mean free path

=
(p⊥)2

v t
= 2

κ⊥

v
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AdS/CFT Correlators

The 4D theory “lives” on the
boundaryof a (4 + n)D curved
bulk space-time with some
fieldsΦ(x, r)

Holography and the Generalized Langevin Process – p. 8



AdS/CFT Correlators

The 4D theory “lives” on the
boundaryof a (4 + n)D curved
bulk space-time with some
fieldsΦ(x, r)

r −→

Holography and the Generalized Langevin Process – p. 8
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The 4D theory “lives” on the
boundaryof a (4 + n)D curved
bulk space-time with some
fieldsΦ(x, r)

r −→
• Bulk fieldsΦ(x, r) couple to boundary operatorsO(x) as

Scoupling =

∫

d4xΦ(x, 0)O(x)
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• Bulk fieldsΦ(x, r) couple to boundary operatorsO(x) as

Scoupling =

∫

d4xΦ(x, 0)O(x)

• Close to the boundary (in 4-momentum space):

Φ(p, r) = A(p)r4−∆ + B(p)r∆, r → 0, ∆ ≡ dim[O]
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AdS/CFT Correlators

The 4D theory “lives” on the
boundaryof a (4 + n)D curved
bulk space-time with some
fieldsΦ(x, r)

r −→
• Bulk fieldsΦ(x, r) couple to boundary operatorsO(x) as

Scoupling =

∫

d4xΦ(x, 0)O(x)

• Close to the boundary (in 4-momentum space):

Φ(p, r) = A(p)r4−∆ + B(p)r∆, r → 0, ∆ ≡ dim[O]

• The 2-point function forO is:

〈O(p)O(−p)〉 ∼ B(p)/A(p).
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5D Holographic setup

We consider a generic5D black holebackground

ds2 = b2(r)

[

dr2

f(r)
− f(r)dt2 + dxidxi

]
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5D Holographic setup

We consider a generic5D black holebackground

ds2 = b2(r)

[

dr2

f(r)
− f(r)dt2 + dxidxi

]

• Boundary:

r → 0, f(r) → 1 log b(r) ∼ log
ℓ

r
+ sub.

• Horizon:

r → rh, f(rh) = 0, Th = ḟ(rh)/4π

• Dual to anon-conformalgauge theory in thermal equilbriumat
a temperatureTh, in adeconfined phase.
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Trailing string

Holographic description of a heavy quark(Gubser 2006):
m

String attached at theAdS boundary and trailing in the interior,
described by the embedding:

~X(t, r) =
(

vt + ξ(r)
)

~v
v , ξ(0) = 0

v

worldsheet horizon

BH horizon

boundary SNG = − 1

2πℓ2
s

∫

dtdr
√

det ĝ
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worldsheet horizon
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boundary SNG = − 1
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∫

dtdr
√
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The induced worldsheet metric
ĝab is a2D black hole:

• w.s. horizonrs where
f(rs) = v2,

• w.s. temperatureTs < Th.
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Trailing string

Holographic description of a heavy quark(Gubser 2006):
m

String attached at theAdS boundary and trailing in the interior,
described by the embedding:

~X(t, r) =
(

vt + ξ(r)
)

~v
v , ξ(0) = 0

v

worldsheet horizon

BH horizon

boundary SNG = − 1

2πℓ2
s

∫

dtdr
√

det ĝ

The induced worldsheet metric
ĝab is a2D black hole:

• w.s. horizonrs where
f(rs) = v2,

• w.s. temperatureTs < Th.

Pure AdS:Ts = Th/
√

γ, γ ≡ 1/
√

1 − v2
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Trailing string fluctuations

Now consider fluctuations around the trailing string solution:

~X(t, r) =
(

vt + ξ(r)
)~v

v
+ δ ~X(r, t)
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Trailing string fluctuations

Now consider fluctuations around the trailing string solution:

~X(t, r) =
(

vt + ξ(r)
)~v

v
+ δ ~X(r, t)

Recall the boundary coupling:

Sbdr =

∫

dtX i(t)Fi(t) ≃ S0
bdr +

∫

δX i(0, t)Fi(t)
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Trailing string fluctuations

Now consider fluctuations around the trailing string solution:

~X(t, r) =
(

vt + ξ(r)
)~v

v
+ δ ~X(r, t)

Recall the boundary coupling:

Sbdr =

∫

dtX i(t)Fi(t) ≃ S0
bdr +

∫

δX i(0, t)Fi(t)

δ ~X(r, t) is the bulk field dual to the boundary operator~F

⇒ According to the AdS/CFT prescriptioncorrelators of~F are
obtained from the solutions of the wave equation forδ ~X(r, t)
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Retarded Correlator

Expanding the trailing string action to quadratic order in
Ψ(r, t) ≡ {δX⊥, δX‖} one finds the wave equation:

∂α

(

Hαβ(r)∂β Ψ
)

= 0 α, β = r, t

Hαβ(r) determined by the backgroundb(r), f(r).
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Retarded Correlator

Expanding the trailing string action to quadratic order in
Ψ(r, t) ≡ {δX⊥, δX‖} one finds the wave equation:

∂α

(

Hαβ(r)∂β Ψ
)

= 0 α, β = r, t

Hαβ(r) determined by the backgroundb(r), f(r).

Prescription for the real-time retarded propagator(Son + Starinets, ’02):

GR(ω) = Hrα Ψ∗
R(r, ω) ∂α ΨR(r, ω)

∣

∣

∣

Boundary

ΨR(r, ω) is the solution with boundary conditions:

ΨR(0, ω) = 1, ΨR(r, ω) ∼ (rs − r)−
iω

4πTs , r ∼ rs
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Diffusion coefficient

In thezero-frequency limitwe get thediffusion coefficients:

η⊥ =
b2(rs)

2πℓ2
s

, κ⊥ = 2Tsη
⊥
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Diffusion coefficient

In thezero-frequency limitwe get thediffusion coefficients:

η⊥ =
b2(rs)

2πℓ2
s

, κ⊥ = 2Tsη
⊥

Is this enough to describe quark diffusion?
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In thezero-frequency limitwe get thediffusion coefficients:

η⊥ =
b2(rs)

2πℓ2
s

, κ⊥ = 2Tsη
⊥

Is this enough to describe quark diffusion?

• Thelocalapproximation of the full generalized Langevin
requires we are in along time regime, where only low
frequencies are relevant:
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Diffusion coefficient

In thezero-frequency limitwe get thediffusion coefficients:

η⊥ =
b2(rs)

2πℓ2
s

, κ⊥ = 2Tsη
⊥

Is this enough to describe quark diffusion?

• Thelocalapproximation of the full generalized Langevin
requires we are in along time regime, where only low
frequencies are relevant:

• Consistent only if the relaxation time of the process(1/ηD) is
much slower than the correlation time(τc ∼ 1/Ts) of GR(t)

(effectivelyGR(t) ≈ δ(t)).
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Validity of the local approximation

The local Langevin description is valid if

1/ηD ≫ 1/Ts

If this fails, need thefull t-dependenceof the Langevin correlators.
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Validity of the local approximation

The local Langevin description is valid if

1/ηD ≫ 1/Ts

If this fails, need thefull t-dependenceof the Langevin correlators.

This is the case e.g. in the bottom up Improved Holographic QCD
modelGursoy,Kiritsis,FN ’09: ForT ≥ 2Tc the local approximation breaks
down for charm quark withp > 20GeV .
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Validity of the local approximation

The local Langevin description is valid if

1/ηD ≫ 1/Ts

If this fails, need thefull t-dependenceof the Langevin correlators.

This is the case e.g. in the bottom up Improved Holographic QCD
modelGursoy,Kiritsis,FN ’09: ForT ≥ 2Tc the local approximation breaks
down for charm quark withp > 20GeV .

No prolbem: The holographic computation gives the fullGR(t− t′).
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Validity of the local approximation

The local Langevin description is valid if

1/ηD ≫ 1/Ts

If this fails, need thefull t-dependenceof the Langevin correlators.

This is the case e.g. in the bottom up Improved Holographic QCD
modelGursoy,Kiritsis,FN ’09: ForT ≥ 2Tc the local approximation breaks
down for charm quark withp > 20GeV .

No prolbem: The holographic computation gives the fullGR(t− t′).

Not so fast...

Holography and the Generalized Langevin Process – p. 14



UV behavoir of the full correlator

Can we use this correlator in physical situations to analyzethe
dynamics?
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UV behavoir of the full correlator

Can we use this correlator in physical situations to analyzethe
dynamics?

• Look at thelargeω limit. It can be computed analytically in a
WKB approximation, in the regimeωrsγ ≫ 1:

Im GR(ω) ≃ ℓ2

2πℓ2
s

γ3 ω3 h

(√
2

γω

)

b(r) ∼ ℓ

r
h(r), r → 0
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UV behavoir of the full correlator

Can we use this correlator in physical situations to analyzethe
dynamics?

• Look at thelargeω limit. It can be computed analytically in a
WKB approximation, in the regimeωrsγ ≫ 1:

Im GR(ω) ≃ ℓ2

2πℓ2
s

γ3 ω3 h

(√
2

γω

)

b(r) ∼ ℓ

r
h(r), r → 0

This behavior is too strong forGR to be physical.
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UV behavoir of the full correlator

Can we use this correlator in physical situations to analyzethe
dynamics?

• Look at thelargeω limit. It can be computed analytically in a
WKB approximation, in the regimeωrsγ ≫ 1:

Im GR(ω) ≃ ℓ2

2πℓ2
s

γ3 ω3 h

(√
2

γω

)

b(r) ∼ ℓ

r
h(r), r → 0

This behavior is too strong forGR to be physical.

• Remark: the leading behavior istemperature-independent.
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Dressed Correlators

Proposal to have UV-safe spectral densities:subtract the correlator
obtain from the vacuum background.No black hole,f(r) ≡ 1.

G
(ph)
R (ω) = GR(ω) − G

(vac)
R (ω)
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Dressed Correlators

Proposal to have UV-safe spectral densities:subtract the correlator
obtain from the vacuum background.No black hole,f(r) ≡ 1.

G
(ph)
R (ω) = GR(ω) − G

(vac)
R (ω)

• Physically, equivalent to requiring that a quark in vacuum is
subject to no dissipation.

• Trailing string in the vacuumf(r) = 1: straight line starting at
the boundaryr = 0 and stretching tor → ∞.
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Dressed Correlators

Proposal to have UV-safe spectral densities:subtract the correlator
obtain from the vacuum background.No black hole,f(r) ≡ 1.

G
(ph)
R (ω) = GR(ω) − G

(vac)
R (ω)

• Physically, equivalent to requiring that a quark in vacuum is
subject to no dissipation.

• Trailing string in the vacuumf(r) = 1: straight line starting at
the boundaryr = 0 and stretching tor → ∞.

• The leadingO(ω3) and subleadingO(ω) terms cancel exactly.

Gph
R (ω) ∼ 1/ω ω → ∞

Dispersion relations safe, FT exists, short-time limit regular.
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Subtracted correlator

Gph
R (ω) ∼ 1/ω ω → ∞

Peak atωc ∼ (γrs)
−1 = Ts ⇒ τc ≈ 1/Ts
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Zero-frequency limit reloaded

One must check that the dressed correlator leads to the same
diffusion coefficients at low frequency.
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Zero-frequency limit reloaded

One must check that the dressed correlator leads to the same
diffusion coefficients at low frequency.

• True for all holographic models that arenon-confiningin
vacuum(b(r) → 0 asr → ∞)
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Zero-frequency limit reloaded

One must check that the dressed correlator leads to the same
diffusion coefficients at low frequency.

• True for all holographic models that arenon-confiningin
vacuum(b(r) → 0 asr → ∞)

• For confining backgroundsb(r) has a minimum at somer0, and
b(r) → ∞ at eitherr → ∞ or r → rIR.
In this case the vacuum Langevin coefficientdiverges!
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Zero-frequency limit reloaded

One must check that the dressed correlator leads to the same
diffusion coefficients at low frequency.

• True for all holographic models that arenon-confiningin
vacuum(b(r) → 0 asr → ∞)

• For confining backgroundsb(r) has a minimum at somer0, and
b(r) → ∞ at eitherr → ∞ or r → rIR.
In this case the vacuum Langevin coefficientdiverges!

• Resolution: the straight string isnot the minimal embedding in
the confining vacuum.(Work in progress with E. Kiritsis and
L.Mazzanti)
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Outlook

• We obtained a prescription to computephysicalcorrelators for
the Generalized Langevin process of a heavy quark in the
plasma in the AdS/CFT approach.

• For non-confining background this does not affect the
zero-frequency limit.

• More work needed to obtain fully consistent correlators in the
physically interesting case (confining backgrounds).

• Ultimate goal:use correlators in numerical simulation of the
LHC plasma and compare results to experiment.
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