Effects of the low lying Dirac modes on excited hadrons in lattice QCD

L.Ya. Glozman, C.B. Lang, Mario Schröck

Universität Graz

Peniche, May 7, 2012
Outline

Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Why are the lowest Dirac eigenmodes interesting?

The Banks-Casher relation

\[\langle \psi \psi \rangle = -\pi \rho(0) \]

directly relates the density of the Dirac modes near the origin \(\rho(0) \) to the chiral condensate.
Reminder: chiral symmetry and its breaking

When neglecting the two lightest quark masses, the QCD Lagrangian becomes invariant under the symmetry group

$$SU(2)_L \times SU(2)_R \times U(1)_A$$

The axial vector part of the $SU(2)_L \times SU(2)_R$ symmetry is broken spontaneously in the vacuum whereas the vector part is (approximately) preserved. The $U(1)$ axial symmetry is not only broken spontaneously but also explicitly (axial anomaly).
"Unbreaking" chiral symmetry

- Our goal is to construct hadron correlators out of reduced quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).
“Unbreaking” chiral symmetry

- Our goal is to construct hadron correlators out of reduced quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).

- Mesons:
 - can we restore the chiral symmetry and if, what happens to confinement?
 - what happens to the broken $U(1)$ axial symmetry?
“Unbreaking” chiral symmetry

- Our goal is to construct hadron correlators out of reduced quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).
- Mesons:
 - can we restore the chiral symmetry and if, what happens to confinement?
 - what happens to the broken $U(1)$ axial symmetry?
- Baryons:
 - is the $N(1535)$ the chiral partner of the nucleon?
 - what is the origin of the $\Delta - N$ splitting?
“Unbreaking” chiral symmetry

- Our goal is to construct hadron correlators out of reduced quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).

- Mesons:
 - can we restore the chiral symmetry and if, what happens to confinement?
 - what happens to the broken $U(1)$ axial symmetry?

- Baryons:
 - is the $N(1535)$ the chiral partner of the nucleon?
 - what is the origin of the $\Delta - N$ splitting?

- Landau gauge quark propagator:
 - what happens to the renormalization function $Z(p^2)$ and the mass function $M(p^2)$ once chiral symmetry is unbroken?
Reducing quark propagators

- Consider the Hermitian Dirac operator $D_5 \equiv \gamma_5 D$ (real eigenvalues)
- Split the quark propagator $S \equiv D^{-1}$ into a low mode (lm) part and a reduced (red) part

$$S = \sum_{i \leq k} \mu_i^{-1} |v_i\rangle \langle v_i| \gamma_5 + \sum_{i > k} \mu_i^{-1} |v_i\rangle \langle v_i| \gamma_5$$

$$= S_{lm}(k) + S_{red}(k)$$
Reducing quark propagators

- Consider the Hermitian Dirac operator \(D_5 \equiv \gamma_5 D \) (real eigenvalues)
- Split the quark propagator \(S \equiv D^{-1} \) into a low mode (lm) part and a reduced (red) part

\[
S = \sum_{i \leq k} \mu_i^{-1} |v_i \rangle \langle v_i| \gamma_5 + \sum_{i > k} \mu_i^{-1} |v_i \rangle \langle v_i| \gamma_5
\]

\[
= S_{\text{lm}(k)} + S_{\text{red}(k)}
\]

- In this work we investigate the reduced (red) part of the propagator

\[
S_{\text{red}(k)} = S - S_{\text{lm}(k)}
\]
The setup

- 161 configurations [Gattringer et al., PRD 79 (2009)]
- size $16^3 \times 32$
- two degenerate flavors of light fermions, $m_\pi = 322(5) \text{MeV}$
- lattice spacing $a = 0.1440(12) \text{fm}$
- Chirally Improved (CI) Dirac operator [Gattringer, PRD 63 (2001)] (approximate solution of the Ginsparg-Wilson equation)
- three different kinds of quark sources: Jacobi smeared narrow (0.27 fm) and wide (0.55 fm) sources and a P wave like derivative source → serves a large operator basis for the variational method.
Mesons

We explore the following isovector mesons which would be related via the chiral symmetry [L.Ya. Glozman, Physics Reports 444 (2007)]

\[
\begin{array}{c|c}
U(1)_A & SU(2)_L \times SU(2)_R \text{ (axial)} \\
\rho \longleftrightarrow b_1 & \rho \longleftrightarrow a_1 \\
\end{array}
\]
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

Meson masses vs. Dirac eigenmode reduction level

σ [MeV]

mass $[1/m_\rho]$}

k

ρ, 0th state

C.B. Lang, MS: PRD 84 (2011), arXiv:1107.5195

L.Ya. Glozman, C.B. Lang, MS: in preparation

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Meson masses vs. Dirac eigenmode reduction level

[C.B. Lang, MS: PRD 84 (2011), arXiv:1107.5195]

[L.Ya. Glozman, C.B. Lang, MS: in preparation]
Meson masses vs. Dirac eigenmode reduction level

[C.B. Lang, MS: PRD 84 (2011), arXiv:1107.5195]
[L.Ya. Glozman, C.B. Lang, MS: in preparation]
Meson masses vs. Dirac eigenmode reduction level

[C.B. Lang, MS: PRD 84 (2011), arXiv:1107.5195]
[L.Ya. Glozman, C.B. Lang, MS: in preparation]
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

\[\rho(J^{PC} = 1^{--}) \]

\begin{align*}
&\text{all states: correlators, red(12)} \\
&\text{state 0} \quad \text{state 1} \quad \text{state 2} \\
&\text{state 3} \quad \text{state 4} \\
&\text{state 0} \quad \text{state 1} \\
&\text{all states: correlators, red(32)} \\
&\text{state 0} \quad \text{state 1} \quad \text{state 2} \\
&\text{state 3} \quad \text{state 4} \\
&\text{lowest state(s): eff. masses, red(12)} \\
&\text{state 0} \quad \text{state 1} \\
&\text{lowest state(s): eff. masses, red(32)} \\
&\text{state 0} \quad \text{state 1} \\
\end{align*}

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

\[a_1 \left(J^{PC} = 1^{++} \right) \]

all states: correlators, red(4)

lowest state(s): eff. masses, red(4)

all states: correlators, red(64)

lowest state(s): eff. masses, red(64)

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Motivation and introduction

\[b_1 \left(J^{PC} = 1^{+-} \right) \]

all states: correlators, red(2)

lowest state(s): eff. masses, red(2)

all states: correlators, red(128)

lowest state(s): eff. masses, red(128)

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
The $\Delta - N$ splitting is usually attributed to the hyperfine spin-spin interaction between valence quarks. The realistic candidates for this interaction are:

- the spin-spin color-magnetic interaction
- the flavor-spin interaction related to the spontaneous chiral symmetry breaking
The $\Delta - N$ splitting is usually attributed to the hyperfine spin-spin interaction between valence quarks. The realistic candidates for this interaction are

- the spin-spin color-magnetic interaction
- the flavor-spin interaction related to the spontaneous chiral symmetry breaking

What happens to the $\Delta - N$ splitting after restoration of the chiral symmetry?
Baryons

The $\Delta - N$ splitting is usually attributed to the hyperfine spin-spin interaction between valence quarks. The realistic candidates for this interaction are

- the spin-spin color-magnetic interaction
- the flavor-spin interaction related to the spontaneous chiral symmetry breaking

What happens to the $\Delta - N$ splitting after restoration of the chiral symmetry?
Do the masses of the nucleon and the $N(1535)$ meet?
Baryon masses vs. Dirac eigenmode reduction level

The graph shows the relationship between the mass of the N(+) 0th state and the Dirac eigenmode reduction level, represented by the parameter σ in MeV. The mass is plotted against σ for different values of k. The data points indicate an upward trend as σ increases.
Baryon masses vs. Dirac eigenmode reduction level

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Baryon masses vs. Dirac eigenmode reduction level

\[\text{mass \: [1/m}_\rho \text{]} \]

\[\sigma \text{ [MeV]} \]

\[k \]

- \(N(+) \) 0th state
- \(N(-) \) 0th state
- \(N(+) \) 1st state
- \(N(-) \) 1st state

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Baryon masses vs. Dirac eigenmode reduction level

![Graph showing the relationship between baryon masses and Dirac eigenmode reduction level](image.png)

- N(+) 0th state
- N(+) 1st state
- N(-) 0th state
- N(-) 1st state
- ∆(+) 0th state
- ∆(-) 0th state

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Baryon masses vs. Dirac eigenmode reduction level
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

\[N(J^P = 1/2^+) \]

\[\text{all states: correlators, red(20)} \]

\[\text{lowest state(s): eff. masses, red(20)} \]

\[\text{all states: correlators, red(64)} \]

\[\text{lowest state(s): eff. masses, red(64)} \]

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

\[N(J^P = 1/2^-) \]

all states: correlators, red(12)

\[\text{state 0, state 1, state 2, state 3, state 4, state 5} \]

\[\text{state 0, state 1} \]

all states: correlators, red(64)

\[\text{state 0, state 1, state 2, state 3, state 4, state 5} \]

\[\text{state 0, state 1} \]

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

\[\Delta (J^P = 3/2^+) \]

all states: correlators, red(16)

lowest state(s): eff. masses, red(16)

all states: correlators, red(128)

lowest state(s): eff. masses, red(128)

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

\[\Delta \left(J^P = \frac{3}{2}^- \right) \]

all states: correlators, red(16)

lowest state(s): eff. masses, red(16)

all states: correlators, red(128)

lowest state(s): eff. masses, red(128)
The lattice quark propagator

The tree-level quark propagator is

$$S_0(p) = \frac{1}{i\not{p} + m_0}$$
The lattice quark propagator

The tree-level quark propagator is

\[S_0(p) = \frac{1}{i\not{p} + m_0} \]

\[S_0(p) \rightarrow S_{\text{bare}}(a; p) = Z_2(\mu; a)S(\mu; p) \]
The lattice quark propagator

The tree-level quark propagator is

\[
S_0(p) = \frac{1}{i\not{p} + m_0}
\]

\[
S_0(p) \rightarrow S_{\text{bare}}(a; p) = Z_2(\mu; a)S(\mu; p)
\]

the renormalized quark propagator

\[
S(\mu; p) = \frac{1}{i\not{p}A(\mu; p^2) + B(\mu; p^2)} = \frac{Z(\mu; p^2)}{i\not{p} + M(p^2)}.
\]
The lattice quark propagator

The tree-level quark propagator is

$$S_0(p) = \frac{1}{i\not{p} + m_0}$$

$$S_0(p) \rightarrow S_{\text{bare}}(a; p) = Z_2(\mu; a)S(\mu; p)$$

the renormalized quark propagator

$$S(\mu; p) = \frac{1}{i\not{p}A(\mu; p^2) + B(\mu; p^2)} = \frac{Z(\mu; p^2)}{i\not{p} + M(p^2)}.$$

We calculate $S_{\text{bare}}(a; p)$ in Landau gauge on the lattice and therefrom extract

- the renormalization function $Z(\mu; p^2)$
- the renormalization point independent mass function $M(p^2)$
The quark propagator under eigenmode reduction

\[Z(p^2) \]

\[M(p^2) \] [MeV]

M. Schröck

Effects of the low lying Dirac modes on excited hadrons in lattice QCD
The quark propagator under eigenmode reduction

M. Schröck
Effects of the low lying Dirac modes on excited hadrons in lattice QCD
The quark propagator under eigenmode reduction

The quark propagator under eigenmode reduction

Conclusions

- low lying eigenvalues of the Dirac operator are associated with chiral symmetry breaking
- we have computed hadron propagators while removing increasingly more of the low lying eigenmodes of the Dirac operator
- the confinement properties remain intact, i.e., we still observe clear bound states for most of the studied hadrons
- the mass values of the vector meson chiral partners a_1 and ρ approach each other: restoration of $SU(2)_L \times SU(2)_R$
- no degeneracy between a_1 and b_1: $U(1)_A$ axial anomaly untouched
- the nucleon and the $N(1535)$ become degenerate
- the spin-spin color-magnetic interaction and the flavor-spin interaction are of equal importance for the $\Delta - N$ splitting
- the dynamical mass generation of quarks as seem from the IR behavior of $M(p^2)$ unimportant for chiral symmetric hadrons
Low-mode contribution of D and D_5 to the π and ρ correlators

![Graphs showing the correlators $C_{\pi}(t)$ and $C_{\rho}(t)$ for different modes and lattice QCD calculations.](image)
Low-mode contribution of D and D_5 to the π and ρ correlators
ρ interpolators

<table>
<thead>
<tr>
<th>#_ρ</th>
<th>interpolator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\bar{a}_n \gamma_k b_n$</td>
</tr>
<tr>
<td>8</td>
<td>$\bar{a}_w \gamma_k \gamma_t b_w$</td>
</tr>
<tr>
<td>12</td>
<td>$\bar{a}_{\partial_k} b_w - \bar{a}w b{\partial_k}$</td>
</tr>
<tr>
<td>17</td>
<td>$\bar{a}{\partial_i} \gamma_k b{\partial_i}$</td>
</tr>
<tr>
<td>22</td>
<td>$\bar{a}{\partial_k} \epsilon{ijk} \gamma_j \gamma_5 b_w - \bar{a}w \epsilon{ijk} \gamma_j \gamma_5 b_{\partial_k}$</td>
</tr>
</tbody>
</table>

Interpolators for the ρ-meson, $J^{PC} = 1^{--}$. The first column shows the number, the second shows the explicit form of the interpolator. cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]
a_1 interpolators

<table>
<thead>
<tr>
<th>$#_{a_1}$</th>
<th>interpolator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\bar{a}_n \gamma_k \gamma_5 b_n$</td>
</tr>
<tr>
<td>2</td>
<td>$\bar{a}_n \gamma_k \gamma_5 b_w + \bar{a}_w \gamma_k \gamma_5 b_n$</td>
</tr>
<tr>
<td>4</td>
<td>$\bar{a}_w \gamma_k \gamma_5 b_w$</td>
</tr>
</tbody>
</table>

a_1-meson, $J^{PC} = 1^{++}$, cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]
b_1 interpolators

<table>
<thead>
<tr>
<th>$#_{b_1}$</th>
<th>interpolator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$\bar{a}_\partial b_n - \bar{a}n \gamma_5 b\partial$</td>
</tr>
<tr>
<td>8</td>
<td>$\bar{a}_\partial \gamma_5 b_w - \bar{a}w \gamma_5 b\partial$</td>
</tr>
</tbody>
</table>

b_1-meson, $J^{PC} = 1^{-+}$, cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]
\(N \) interpolators

- \(N(i) = \epsilon_{abc} \Gamma_1^{(i)} u_a \left(u_b^T \Gamma_2^{(i)} d_c - d_b^T \Gamma_2^{(i)} u_c \right) \)
- \(N(+) \): 1, 2, 4, 14, 15, 18
- \(N(-) \): 1, 7, 8, 9

\[
\begin{array}{c|c|c|c|c}
\chi^{(i)} & \Gamma_1^{(i)} & \Gamma_2^{(i)} & \text{smearing} & \#N \\
\hline
\chi^{(1)} & 1 & C \gamma_5 & (nn)n & 1 \\
 & & & (nn)w & 2 \\
 & & & (nw)n & 3 \\
 & & & (nw)w & 4 \\
 & & & (ww)n & 5 \\
 & & & (ww)w & 6 \\
\hline
\chi^{(2)} & \gamma_5 & C & (nn)n & 7 \\
 & & & (nn)w & 8 \\
 & & & (nw)n & 9 \\
 & & & (nw)w & 10 \\
 & & & (ww)n & 11 \\
 & & & (ww)w & 12 \\
\hline
\chi^{(3)} & i 1 & C \gamma_t \gamma_5 & (nn)n & 13 \\
 & & & (nn)w & 14 \\
 & & & (nw)n & 15 \\
 & & & (nw)w & 16 \\
 & & & (ww)n & 17 \\
 & & & (ww)w & 18 \\
\end{array}
\]

cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]
Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

Δ interpolators

- $\epsilon_{abc} u_a (u_b^T C \gamma_k u_c)$
- $\Delta(+)$: 1, 2, 3
- $\Delta(−)$: 1, 2, 3

<table>
<thead>
<tr>
<th>smearing</th>
<th>#(\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nn)n</td>
<td>1</td>
</tr>
<tr>
<td>(nn)w</td>
<td>2</td>
</tr>
<tr>
<td>(nw)n</td>
<td>3</td>
</tr>
<tr>
<td>(nw)w</td>
<td>4</td>
</tr>
<tr>
<td>(ww)n</td>
<td>5</td>
</tr>
<tr>
<td>(ww)w</td>
<td>6</td>
</tr>
</tbody>
</table>

cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]