Mesons 000 Baryons 000 Quark propagator 00 Conclusions O

Effects of the low lying Dirac modes on excited hadrons in lattice QCD

L.Ya. Glozman, C.B. Lang, Mario Schröck

Universität Graz

Peniche, May 7, 2012

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
Outline				

Motivation and introduction

Mesons

Baryons

Quark propagator

Conclusions

M. Schröck

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0

Why are the lowest Dirac eigenmodes interesting?

The Banks-Casher relation

$$\left< \overline{\psi}\psi \right> = -\pi
ho$$
(0)

directly relates the density of the Dirac modes near the origin $\rho(0)$ to the chiral condensate.

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
0000	000	000	00	0

Reminder: chiral symmetry and its breaking

When neglecting the two lightest quark masses, the QCD Lagrangian becomes invariant under the symmetry group

 $SU(2)_L \times SU(2)_R \times U(1)_A$

The axial vector part of the $SU(2)_L \times SU(2)_R$ symmetry is broken spontaneously in the vacuum whereas the vector part is (approximately) preserved. The U(1) axial symmetry is not only broken spontaneously but also explicitly (axial anomaly).

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
"I he have a later of"	ما میں امراد ا	.		

- Unbreaking chiral symmetry
 - Our goal is to construct hadron correlators out of *reduced* quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0

"Unbreaking" chiral symmetry

- Our goal is to construct hadron correlators out of *reduced* quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).
- Mesons:
 - can we restore the chiral symmetry and if, what happens to confinement?
 - what happens to the broken U(1) axial symmetry?

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusion
00000	000	000	00	0

"Unbreaking" chiral symmetry

- Our goal is to construct hadron correlators out of *reduced* quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).
- Mesons:
 - can we restore the chiral symmetry and if, what happens to confinement?
 - what happens to the broken U(1) axial symmetry?
- Baryons:
 - is the N(1535) the chiral partner of the nucleon?
 - what is the origin of the ΔN splitting?

Motivation and introduction	Mesons	Baryons	Quark propagator
00000	000	000	00

"Unbreaking" chiral symmetry

- Our goal is to construct hadron correlators out of *reduced* quark propagators which exclude a variable number of the lowest Dirac eigenmodes (see also, e.g., [DeGrand, PRD 69 (2004)]).
- Mesons:
 - can we restore the chiral symmetry and if, what happens to confinement?
 - what happens to the broken U(1) axial symmetry?
- Baryons:
 - is the N(1535) the chiral partner of the nucleon?
 - what is the origin of the ΔN splitting?
- Landau gauge quark propagator:
 - what happens to the renormalization function $Z(p^2)$ and the mass function $M(p^2)$ once chiral symmetry is unbroken?

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
Deducing quark	nronorati			

Reducing quark propagators

- Consider the Hermitian Dirac operator $D_5\equiv\gamma_5 D$ (real eigenvalues)
- Split the quark propagator $S \equiv D^{-1}$ into a low mode (Im) part and a *reduced* (red) part

$$\begin{split} S &= \sum_{i \leq k} \mu_i^{-1} \ket{v_i} \bra{v_i} \gamma_5 + \sum_{i > k} \mu_i^{-1} \ket{v_i} \bra{v_i} \gamma_5 \\ &= S_{\mathrm{lm}(k)} + S_{\mathrm{red}(k)} \end{split}$$

Deduction and and				
00000	000	000	00	0
Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions

Reducing quark propagators

- Consider the Hermitian Dirac operator $D_5\equiv\gamma_5 D$ (real eigenvalues)
- Split the quark propagator $S \equiv D^{-1}$ into a low mode (Im) part and a *reduced* (red) part

$$S = \sum_{i \le k} \mu_i^{-1} |v_i\rangle \langle v_i | \gamma_5 + \sum_{i > k} \mu_i^{-1} |v_i\rangle \langle v_i | \gamma_5$$
$$= S_{\operatorname{lm}(k)} + S_{\operatorname{red}(k)}$$

• In this work we investigate the *reduced* (red) part of the propagator

$$S_{\mathrm{red}(k)} = S - S_{\mathrm{lm}(k)}$$

M. Schröck

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
The esture				

- I he setup
 - 161 configurations [Gattringer et al., PRD 79 (2009)]
 - size $16^3 \times 32$
 - two degenerate flavors of light fermions, $m_\pi=322(5)\,{
 m MeV}$
 - lattice spacing $a = 0.1440(12) \, \mathrm{fm}$
 - Chirally Improved (CI) Dirac operator [Gattringer, PRD 63 (2001)] (approximate solution of the Ginsparg-Wilson equation)
 - three different kinds of quark sources: Jacobi smeared narrow (0.27 fm) and wide (0.55 fm) sources and a P wave like derivative source → serves a large operator basis for the variational method.

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	•00	000	00	0
Mesons				

We explore the following isovector mesons which would be related via the chiral symmetry [L.Ya. Glozman, Physics Reports 444 (2007)]

$$\frac{U(1)_A \quad SU(2)_L \times SU(2)_R \text{ (axial)}}{\rho \longleftrightarrow b_1 \quad \rho \longleftrightarrow a_1}$$

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusion
00000	000	000	00	0

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusion
00000	000	000	00	0

[C.B. Lang, MS: PRD 84 (2011), arXiv:1107.5195] [L.Ya. Glozman, C.B. Lang, MS: *in preparation*]

M. Schröck

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusion
00000	000	000	00	0

[C.B. Lang, MS: PRD 84 (2011), arXiv:1107.5195] [L.Ya. Glozman, C.B. Lang, MS: *in preparation*]

M. Schröck

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusion
00000	000	000	00	0

[C.B. Lang, MS: PRD 84 (2011), arXiv:1107.5195] [L.Ya. Glozman, C.B. Lang, MS: *in preparation*]

M. Schröck

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	● 00	00	0
Baryons				

The $\Delta - N$ splitting is usually attributed to the hyperfine spin-spin interaction between valence quarks. The realistic candidates for this interaction are

- the spin-spin color-magnetic interaction
- the flavor-spin interaction related to the spontaneous chiral symmetry breaking

Motivation and introduction	Mesons	Baryons	Quark propagator
00000	000	•00	00

Baryons

The $\Delta - N$ splitting is usually attributed to the hyperfine spin-spin interaction between valence quarks. The realistic candidates for this interaction are

- the spin-spin color-magnetic interaction
- the flavor-spin interaction related to the spontaneous chiral symmetry breaking

What happens to the $\Delta - N$ splitting after restoration of the chiral symmetry?

Motivation and introduction	Mesons	Baryons	Quar
00000	000	•00	00

Baryons

The $\Delta - N$ splitting is usually attributed to the hyperfine spin-spin interaction between valence quarks. The realistic candidates for this interaction are

- the spin-spin color-magnetic interaction
- the flavor-spin interaction related to the spontaneous chiral symmetry breaking

What happens to the $\Delta - N$ splitting after restoration of the chiral symmetry?

Do the masses of the nucleon and the N(1535) meet?

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
Baryon masses vs.	Dirac eig	genmode red	luction level	

Damon massas va	Direction	n mada kad	uction loval	
00000	000	000	00	0
Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions

Damian massas vis	Direction	an maada kad	uction loval	
00000	000	000	00	0
Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
Baryon masses vs.	Dirac eig	enmode red	luction level	

		اممير مام ممرم	unting laund	
00000	000	000	00	0
Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions

Effects of the low lying Dirac modes on excited hadrons in lattice QCD

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	•0	0

The tree-level quark propagator is

$$S_0(p) = \frac{1}{i\not p + m_0}$$

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	•0	0

The tree-level quark propagator is

$$S_0(p) = \frac{1}{i \not p + m_0}$$

$$S_0(p)
ightarrow S_{ ext{bare}}(a;p) = Z_2(\mu;a)S(\mu;p)$$

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	•0	0

The tree-level quark propagator is

$$S_0(p) = \frac{1}{i\not p + m_0}$$

$$S_0(p)
ightarrow S_{ ext{bare}}(a;p) = Z_2(\mu;a)S(\mu;p)$$

the renormalized quark propagator

$$S(\mu; p) = \frac{1}{i \not p A(\mu; p^2) + B(\mu; p^2)} = \frac{Z(\mu; p^2)}{i \not p + M(p^2)}.$$

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	•0	0

The tree-level quark propagator is

$$S_0(p) = \frac{1}{i\not p + m_0}$$

$$S_0(p)
ightarrow S_{ ext{bare}}(a;p) = Z_2(\mu;a)S(\mu;p)$$

the renormalized quark propagator

$$S(\mu; p) = rac{1}{i \not\!\!\!/ A(\mu; p^2) + B(\mu; p^2)} = rac{Z(\mu; p^2)}{i \not\!\!\!/ + M(p^2)}.$$

We calculate $S_{\text{bare}}(a; p)$ in Landau gauge on the lattice and therefrom extract

- the renormalization function $Z(\mu; p^2)$
- the renormalization point independent mass function $M(p^2)$

The quark propagator under eigenmode reduction

[MS: PLB 711 (2012), arXiv:1112.5107]

[MS: PLB 711 (2012), arXiv:1112.5107]

Motivation and introduction	Meson
00000	000

Baryon 000

Conclusions

- low lying eigenvalues of the Dirac operator are associated with chiral symmetry breaking
- we have computed hadron propagators while removing increasingly more of the low lying eigenmodes of the Dirac operator
- the confinement properties remain intact, i.e., we still observe clear bound states for most of the studied hadrons
- the mass values of the vector meson chiral partners a_1 and ρ approach each other: restoration of $SU(2)_L \times SU(2)_R$
- no degeneracy between a_1 and b_1 : $U(1)_A$ axial anomaly untouched
- the nucleon and the N(1535) become degenerate
- the spin-spin color-magnetic interaction and the flavor-spin interaction are of equal importance for the $\Delta-N$ splitting
- the dynamical mass generation of quarks as seem from the IR behavior of $M(p^2)$ unimportant for chiral symmetric hadrons

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
ρ interpolators				

$\#_{\rho}$	interpolator(s)
1	$\overline{a}_n \gamma_k b_n$
8	$\overline{a}_w \gamma_k \gamma_t b_w$
12	$\overline{a}_{\partial_k} b_w - \overline{a}_w b_{\partial_k}$
17	$\overline{a}_{\partial_i}\gamma_k b_{\partial_i}$
22	$\overline{a}_{\partial_k}\epsilon_{ijk}\gamma_j\gamma_5 b_w - \overline{a}_w\epsilon_{ijk}\gamma_j\gamma_5 b_{\partial_k}$

Interpolators for the ρ -meson, $J^{PC} = 1^{--}$. The first column shows the number, the second shows the explicit form of the interpolator. cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
a_1 interpolators				

$\#_{a_1}$	interpolator(s)
1	$\overline{a}_n \gamma_k \gamma_5 b_n$
2	$\overline{a}_n \gamma_k \gamma_5 b_w + \overline{a}_w \gamma_k \gamma_5 b_n$
4	$\overline{a}_w \gamma_k \gamma_5 b_w$

 a_1 -meson, $J^{PC} = 1^{++}$, cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]

Motivation and introduction	Mesons	Baryons	Quark propagator	Conclusions
00000	000	000	00	0
b_1 interpolators				

#b1	interpolator(s)
6	$\overline{a}_{\partial_k}\gamma_5 b_n - \overline{a}_n\gamma_5 b_{\partial_k}$
8	$\overline{a}_{\partial_k}\gamma_5 b_w - \overline{a}_w\gamma_5 b_{\partial_k}$

 b_1 -meson, $J^{PC} = 1^{+-}$, cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]

Motivation and introduction	Mesons
00000	000

Baryons

Conclusions

N interpolators

- $N^{(i)} = \epsilon_{abc} \Gamma_1^{(i)} u_a \left(u_b^T \Gamma_2^{(i)} d_c d_b^T \Gamma_2^{(i)} u_c \right)$
- N(+): 1, 2, 4, 14, 15, 18

$\chi^{(i)}$	$\Gamma_1^{(i)}$	$\Gamma_2^{(i)}$	smearing	#N
			(<i>nn</i>) <i>n</i>	1
			(nn)w	2
			(nw)n	3
$\chi^{(1)}$	1	C ex	(nw)w	4
$\chi^{(1)}$	1	$C \gamma_5$	(ww)n	5
			(ww)w	6
			(<i>nn</i>) <i>n</i>	7
			(nn)w	8
			(nw)n	9
$\chi^{(2)}$		C	(nw)w	10
$\chi(-)$	γ_5	C	(ww)n	11
			(ww)w	12
			(<i>nn</i>) <i>n</i>	13
			(nn)w	14
			(nw)n	15
(3)	<i>i</i> 1	<i>C</i>	(nw)w	16
$\chi^{(3)}$	11	$C \gamma_t \gamma_5$	(ww)n	17
			(ww)w	18

cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]

M. Schröck

0000 000 000	00 0	

Δ interpolators

#∆ 1
1
- -
2
3
4
5
6
4 5

cf. [Engel et al., PRD 82 (2010), arXiv:1005.1748]

