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Motivation

• Understanding the QCD phase diagram at non zero temperature and
baryon density is an essential goal of heavy ion collision experiments

• Theoretically, it is a tough task because the transition between the
hadronic and quark gluon phases takes place typically at the scale of
ΛQCD where perturbative techniques fail

• Lattice QCD is the ideal candidate in such cases, but there are
issues, the most severe being the calculations at nonzero baryon
density

• A complementary understanding could be built up by studying
QCD-like models that are easier to deal with
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Strategy

• Make sure that the symmetry breaking pattern is same

• mq = 0 :SUL (Nf )× SUR (Nf ) (T > Tχ)(〈q̄q〉 = 0)
→ SUV (Nf ) (T < Tχ)(〈q̄q〉 6= 0)

• mq → ∞: Z (3) (T < Td)(〈L〉 = 0) is spontaneously broken for
(T > Td)(〈L〉 6= 0) where L is the Polyakov loop that serves as the
order parameter

• The relevant degrees of freedom carry the ’correct’ quantum
numbers

• At low T, mesons and baryons dominate
• At large T, goes to a gas of quarks and gluons
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Model

• (P)QM: Scavenius et al 2002, Schaefer, Pawlowski, Wambach 2007

• Lagrangian
L = Tr

(

∂µM
†∂µM

)

+q̄f
(

iγµDµ−gM5

)

qf −UM (M)−UP

(

Φ, Φ̄,T
)

,

where qf = (u, d , s)
T
, M = Ta(σa + iπa) are the mesonic fields with

Ta as the generators of U(3), the gluon dynamics is described by an
effective theory of Polyakov loops where Φ = 1

Nc
〈TrcL〉

• UM (M) = m2Tr(M†M) + λ1

[

Tr(M†M)
]2

+ λ2Tr
(

M†M
)2

−

c
[

det(M) + det(M†)
]

− Tr
[

H(M +M†)
]

, where H = Taha, to
realise the (2 + 1) scenario all except h0 and h8 are 0; with nonzero
condensates (σ0, σ8) rotated to non strange-strange basis (σx , σy )
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Model
Mean Field Analysis

• Grand Canonical Partition function for a spatially uniform system in
thermal equilibrium at finite temperature T and quark chemical
potential µf (f = u, d , s): Z =

∫
∏

a DσaDπaDΦDΦ̄DqDq̄

exp

[

−
∫ β

0
dτ

∫

V
d3x

(

LE +
∑

f=u,d,s µf q̄f γ
0qf

)]

• Neglect the thermal and quantum fluctuations of M fields and Φ
and Φ̄

• Thus we obtain the grand potential
Ω (T , µx , µy ) = −T ln Z

V
= UM (σx , σy ) + UP

(

Φ, Φ̄,T
)

+Ωq̄q
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Model
Meson potential

• UM (σx , σy ) =
m2

2

(

σ2
x + σ2

y

)

− c

2
√
2
σ2
xσy +

λ1

2 σ
2
xσ

2
y +

1
8 (2λ1 + λ2)σ

4
x +

1
8 (2λ1 + 2λ2)σ

4
y − hxσx − hyσy
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Model
Polyakov loop potential

• A Landau-Ginzburg type polynomial potential1

UPoly

(

Φ, Φ̄,T
)

= T 4 − b2(T )
2 ΦΦ̄− b3

6

(

Φ3 + Φ̄3
)

+ b4
4

(

ΦΦ̄
)2

where

b2 (T ) = a0 + a1
(

T0

T

)

+ a2
(

T0

T

)2
+ a3

(

T0

T

)3

• the scenario can be even bettered by taking care of the Jacobian of
transformation from L to Φ which results in the following modified
ansatz2: UPoly−VM/T 4 = UPoly/T

4 − κlog [J(Φ, Φ̄)] where

J(Φ, Φ̄) = (1− 6ΦΦ̄ + 4(Φ3 + Φ̄
3
)− 3(ΦΦ̄)2)

1Ratti et al. 2006
2Ratti et al. 2007, Ghosh et al. 2008
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Model
Including vacuum fluctuations

• Ωq̄q = Ωv
q̄q +Ωth

q̄q,

• Ωv
q̄q = −2Nc

∑

f=u,d,s

∫

d3p

(2π)3
Ef

• Ωth
q̄q = −2T

∑

f=u,d,s

∫

d3p

(2π)3

[

ln g+
f + ln g−

f

]

where

g+
f =

[

1 + 3Φe−E+
f
/T + 3Φ̄e−2E+

f
/T + e−3E+

f
/T

]

. Here E±
f = Ef ∓ µf

where Ef is the single particle energy of a quark/antiquark,
Ef =

√

p2 +mf
2 and mx = g σx

2
, my = g

σy√
2

• In the 2 flavor massless case, the order of the phase transition
changes from first to second order3

• Modifies the shape of the isentropic trajectories near the critical end
point4

• In the presence of magnetic field, the phase diagram is shown to be
considerably affected by the vacuum term5

3Phys. Rev. D 82, 034029 (2010)
4Phys. Lett. B 682 401407 (2010)
5Phys. Rev. D 82, 105016 (2010)
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Model
Including vacuum fluctuations

• Study the effect of including the vacuum fluctuations on
thermodynamics of the (2 + 1) PQM model and compare with
lattice

• Use dim. reg. to regularise the diverging vacuum integral:
Ωv

q̄q = Ωreg
q̄q (Λ) = − Nc

8π2

∑

f=u,d,s m
4
f log

[

mf

Λ

]

∼ −σ4 log (σ)

• Ω can be shown to be independent of Λ ⇒ Λ is an arbitrary
parameter and physical observables do not depend on it.

• Solve the following gap eqns. to determine the mean field
configurations (σx , σy ,Φ, Φ̄) to be put into Ω and hence obtain
results on thermodynamics and susceptibilities:
∂Ω
∂σx

= ∂Ω
∂σy

= ∂Ω
∂Φ = ∂Ω

∂Φ̄
= 0
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Model
Model Parameters

• Fixed by inputs from lattice and experiments

• The parameters of the mesonic potential namely m2, λ1, λ2 (Λ), c ,
g , hx and hy are fixed by comparing the vacuum properties to the
following experimentally known quantities:mπ and fπ, mK and fK ,
(

m2
η +m2

η′

)

and mσ. g is fixed by using a light quark constituent
mass mx = 300 MeV. This gives a strange quark constituent mass
ms ≈ 433 MeV.

• Parameters of the Polyakov potential are fixed from lattice inputs of
both pure gauge theory as well as (2 + 1) QCD.
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Model
Model Parameters

• Inconsistencies between HotQCD and WB:6

• While in HotQCD Tχ ∼ Td , in WB Tχ < Td

• The peak value of the conformal symmtery breaking measure, ∆ in
the case of HotQCD is almost 150 % greater than that of WB

• We tune T0 to fix the relative order of the chiral and deconfinement
crossovers and adjust κ to tune the peak value of ∆

• For WB: T0 = 270 MeV and κ = 0.2, for HotQCD: T0 = 210 MeV
and κ = 0.1

6latest results from HotQCD (arXiv:1111.1710 [hep-lat]) tend to agree better with
WB
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Fixing κ
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Figure: Plots of ∆ in PQMVT.
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Results
Condensates
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Results
Condensates
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Figure: Plots of ∆l,s in ModelWB (blue) and ModelHotQCD (red) as obtained
in PQMVT are shown.
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Results
p, E , s, cV
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Figure: Plots of p, E , s and cV in PQMVT.
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Results
CEP pushed deeper into nonzero µ
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Results
Susceptibilities

• QCD has three conserved charges: baryon number B , strangeness S
and electric charge Q

• Fluctuations and correlations of the conserved charges are expected
to provide telltale signatures of the CEP (Stephanov 1998)

• Low and high T behaviour:

• High T :P
SB

T 4 =
∑

f=u,d,s

[

7π2

60
+ 1

2

(

µf

T

)2
+ 1

4π2

(

µf

T

)4
]

• Low T : pHRG/T 4 = 1
VT 3

∑

i∈hadrons lnZi (T ,V , µB , µQ , µS)

• χh
BQS
ijk ≈ dl

π2

(

ml

T

)2
K2

(

ml

T

)

B i
lQ

j
l S

k
l

• Similarly in PQM at low T :pPQM/T 4 ∼ K2 (3mq/T ) cosh (3µq/T )
• Then ratios like χh

i
X/χh

j
X become simply X

i−j
l where X ∈ B,Q, S

and Xl are the B,Q, S quantum numbers of hl . Since the quantum
numbers carried by the relevant degrees of freedom are the same in
both HRG and PQM at low T , they agree well.
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Susceptibilities (i + j + k = 2)
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Ratios
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Susceptibilities (i + j + k = 4)
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Susceptibilities (i + j + k = 6)
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Conclusions and Outlook

• The conventional PQM model suffers from a rapid phase transition
contrary to what is found through lattice.

• This could be due to the use of a Polyakov potential which carries
with it a remnant first order phase transition of the pure glue theory.
Another possible reason could be the sudden release of quark
degrees of freedom in PQM with increase in temperature.

• Addition of the vacuum term in PQMVT addresses the latter. This
tames the rapid transitions that we see in the PQM model and
significantly improves the model’s agreement to lattice data.

• The resulting model describes qualitatively the thermodynamics
obtained in LQCD.
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Conclusions and Outlook

• The susceptibilities as obtained in the model compare well with
those of LQCD at 0 µ, particularly the ratios where undetermined
normalisation effects get cancelled as well as the details of the
spectrum, they interpolate well between the low T HRG limit and
high T ideal gas limit.

• There are two possible ways ahead

• Improve the model to include gluon dynamics beyond the potential
description, include fluctuations, effect of baryons

• Apply the model to non-zero µ, include finite size effects, beyond
equilibrium physics
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