

Study of nucleon spin structure by the Drell-Yan process in the COMPASS experiment

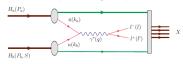
Márcia Quaresma on behalf of the COMPASS/CERN Collaboration

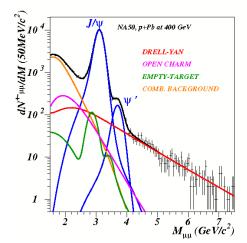
LIP - Lisbon

11th May 2012 Excited QCD 2012

Co-financed by: FCT COMPETE

Outline


- Introduction to the Drell-Yan (DY) process
- Goals of the DY measurement @ COMPASS
- COMPASS Experiment Spectrometer description
- Feasibility of the measurement
- Acceptances, event rates and statistical errors



Annihilation of a $q\bar{q}$ pair from a 2 hadrons collision, producing a lepton pair

- Strong σ_{DY} decreases with the dimuon mass $(\sigma_{DY} \propto M_{\mu\mu}^{-4})$.
- The Drell-Yan signal is very clean above 4 GeV/c^2 dimuon mass. It is the region where we are interested in, the High Mass Region (HMR).

Dimuon mass distribution for p @ 400 GeV/cin a Pb target (NA50 Collaboration)

Drell-Yan angular distribution

The angular distribution of the DY events can be written as:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}[1+\lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi]$$

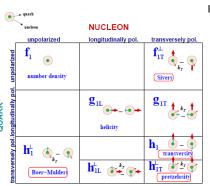
The Lam-Tung sum rule $|1 - \lambda - 2\nu = 0|$ relates the modulation amplitudes of the DY process.

The collinear hypothesis implies: $\lambda=1,\,\mu=0,\,\nu=0$.

It was shown by the NA10 (CERN) and E615 (Fermilab) experiments that this hypothesis is violated.

They measured a modulation of $\cos 2\phi$ up to 30%

This means we cannot neglect the intrinsic transverse momentum k_T of quarks inside hadrons.



Polarized DY @ COMPASS

The nucleon structure in first order QCD is described by:

- 3 PDFs in the collinear approximation
- ullet 8 PDFs taking into account the quark intrinsic transverse momentum, k_T

In the DY COMPASS program we will access 4 of them:

- Transversity h₁: describes the difference between the number density of quarks with parallel and anti-parallel spin w.r.t. the transversely polarised, relatively to the beam direction, father hadron
- Boer-Mulders h₁[⊥]: describes the correlation between the transverse spin and the transverse momentum of a quark in an unpolarised nucleon
- Sivers f₁[±]: describes the influence of the nucleon transverse spin in the transverse momentum distribution of the quark
- Pretzelosity h_{1T}^{\perp} : describes the transverse polarization of a quark, along its intrinsic transverse momentum direction

Polarized DY @ COMPASS

Arnold *et al.*¹ derived the full expression of the σ_{DY} , for arbitrarily polarized beam and target.

Having an unpolarized beam and a transversely polarized target the σ_{DY} in LO can be written as:

$$\begin{split} \frac{d\sigma}{d^{4}qd\Omega} &= \frac{\alpha_{em}^{2}}{Fq^{2}} \hat{\sigma}_{U} \{ (1 + D_{[\sin^{2}\theta]} \middle| A_{U}^{\cos 2\phi} \middle| \cos 2\phi) + |\overrightarrow{S}_{T}| [A_{T}^{\sin \phi_{S}} \middle| \sin \phi_{S} \\ &+ D_{[\sin^{2}\theta]} (A_{T}^{\sin(2\phi + \phi_{S})} \middle| \sin(2\phi + \phi_{S}) + A_{T}^{\sin(2\phi - \phi_{S})} \middle| \sin(2\phi - \phi_{S}))] \} \end{split}$$

where:

- ullet θ and ϕ are the polar and azimuthal angles of μ^+ in the Collins-Soper reference frame
- ullet $\phi_{ extsf{S}}$ is the angle between the transverse spin of the target nucleon and the transverse momentum of the γ^*
- F is given by $F = 4\sqrt{(P_{\pi} \cdot P_{p})^{2} M_{\pi}^{2} M_{p}^{2}}$
- q is the γ^* four-momentum
- \bullet $\hat{\sigma}_U$ is the part of the cross-section surviving the integration over the angles ϕ and ϕ_S
- $|\overrightarrow{S}_T|$ is the target polarization value
- ullet $D_{[\sin^2 heta]}$ is the virtual photon depolarization factor

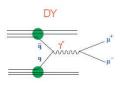
¹S. Arnold et al. Phys.Rev. D79 (2009)034005

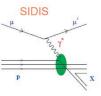
Polarized DY @ COMPASS

$$\begin{split} \frac{d\sigma}{d^{4}qd\Omega} &= \frac{\alpha_{em}^{2}}{Fq^{2}} \hat{\sigma}_{U} \{ (1 + D_{[\sin^{2}\theta]} \middle| A_{U}^{\cos2\phi} \middle| \cos2\phi) + |\overrightarrow{S}_{T}| [\middle| A_{T}^{\sin\phi_{S}} \middle| \sin\phi_{S} \\ &+ D_{[\sin^{2}\theta]} (\middle| A_{T}^{\sin(2\phi + \phi_{S})} \middle| \sin(2\phi + \phi_{S}) + | A_{T}^{\sin(2\phi - \phi_{S})} \middle| \sin(2\phi - \phi_{S}))] \} \end{split}$$

The azimuthal asymmetries A contain a convolution of 2 PDFs of the target and beam hadrons:

- ullet $A_U^{\cos2\phi}$ gives access to the Boer-Mulders functions of both hadrons.
- $A_T^{\sin\phi_S}$ gives access to the unpolarised PDF of beam hadron and the Sivers function of the target nucleon.
- $A_T^{sin(2\phi+\phi_S)}$ gives access to the Boer-Mulders function of the beam hadron and to the pretzelosity function of the target nucleon.
- $A_T^{sin(2\phi-\phi_S)}$ gives access to the Boer-Mulders function of the beam hadron and to the transversity function of the target nucleon.


We need to disentangle the PDFs in each of these asymmetries \Rightarrow it requires some input.

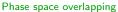


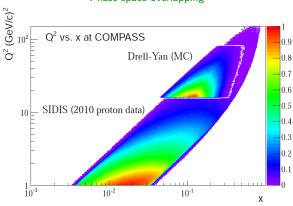
DY vs SIDIS

The Sivers (f_{1T}^{\perp}) and the Boer-Mulders (h_{1}^{\perp}) functions are time-reversal odd functions. This leads to the prediction that they must change sign when accessed from DY or SIDIS².

$$f_{1TDY}^{\perp} = -f_{1TSIDIS}^{\perp}$$

$$h_{1\ DY}^{\perp} = -h_{1\ SIDIS}^{\perp}$$


The experimental confirmation of this sign change is considered a crucial test of non-perturbative QCD.


²J.C. Collins, Phys. Lett. B536 (2002) 43, J.C. Collins, talk at LIGHT CONE 2008

DY vs SIDIS

J/ψ duality

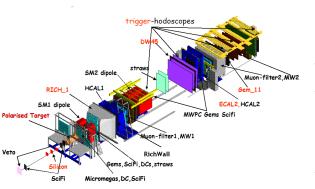
The J/ψ duality corresponds to consider a possible analogy in the production mechanisms of both J/ψ $(q\bar{q} \to J/\psi + X)$ and γ^* .

Studying the charmonium mass region in the dilepton decay channel:

- $lacktriangledisplays \begin{picture}(10,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}}$
- ② Access PDFs from J/ψ events larger statistics available

COMPASS @ CERN

COmmon Muon Proton Apparatus for Structure and Spectroscopy



Experimental setup

Beam: π^- @ 190 GeV/c

Polarized target – NH_3

- Beam telescope:
 - SciFis
- Large Angle Spectrometer (LAS):
 - SM1 magnet
 - Tracking detectors
 - RICH
 - ECAL1
 - HCAL1
 - Muons Filter 1
- Small Angle Spectrometer (SAS):
 - SM2 magnet
 - Tracking detectors
 - ECAL2
 - HCAL2
 - Muons Filter 2

Feasibility of the measurement

In 2007, 2008 and 2009 short Drell-Yan beam tests were performed, to check the feasibility of the measurement.

2007 test:

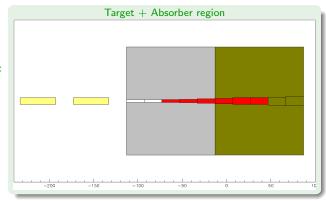
- open spectrometer (without hadron absorber)
- π^- beam @ 160 GeV/c ($I_{beam}=4\times10^6~\pi/s$) and an unpolarized NH₃ target
- we collected $\simeq 90000$ dimuons in $\lesssim 12$ hours
- validation of the J/ψ yields expected

2008 test:

- open spectrometer (without hadron absorber)
- \bullet increase of the beam intensity up to $6.5\times 10^6~\pi/s$
- high occupancy of detectors closer to the target region ⇒ confirmed that is mandatory the use of a hadron absorber
- verification of the spectrometer response and radiation doses

Feasibility of the measurement

2009 test was done using:

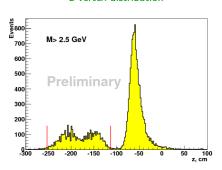

- \bullet π^- beam @ 190 GeV/c
- Two target cells (polyethylene) with 40 cm length and 5 cm diameter, spaced by 20 cm
- A prototype of an absorber:
 - \bullet Two blocks, of concrete and stainless steel, 100 cm length each, and 80 \times 80 cm^2 in transverse dimensions each
 - A beam plug, inside the central part of absorber, made of W and steel disks.

Number of radiation lengths (multiple scattering for muons):

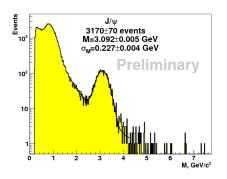
$$x/X_0 = 66.17$$

Number of interaction lengths (stopping power for pions):

$$x/\lambda_{int} = 6.69$$



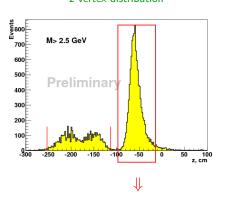
2009 DY beam test - results



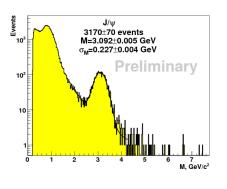
3 days test

z vertex distribution

Dimuon mass distribution



2009 DY beam test - results

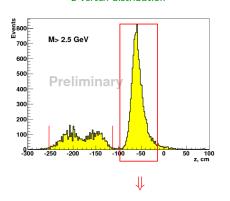


3 days test

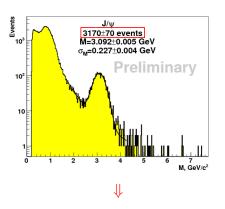
z vertex distribution

Dimuon mass distribution

Huge number of events due to the fact we didn't have a dimuon trigger.



2009 DY beam test - results


3 days test

z vertex distribution

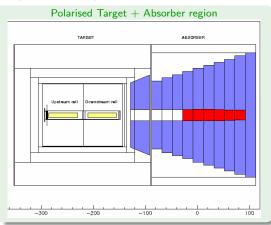
Huge number of events due to the fact we didn't have a dimuon trigger.

Dimuon mass distribution

The number of expected J/ψ was reached.

Current DY setup status

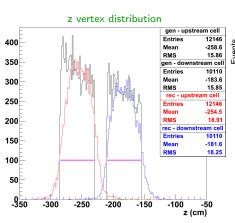
The proposal setup was in the meanwhile optimized. The newer version is:


- Two target cells (NH₃) inside the dipole with 55 cm length and 4 cm diameter, spaced by 20 cm;
- The absorber is 236 cm long, made of Al₂O₃;
- The plug inside the absorber is made of 6 disks of W, 20 cm long each and 20 cm of Alumina in the most downstream part (total of 140 cm).

Number of radiation lengths (multiple scattering for muons):

$$x/X_0 = 33.53$$
 (66.17 for 2009 test absorber)

Number of interaction lengths (stopping power for pions):


$$x/\lambda_{int} = 7.25$$
 (6.69 for 2009 test absorber)



Current DY setup status - MC results

 $\Delta z = 6 \ cm$ in HMR $(M_{\mu\mu} > 4 \ GeV/c)$

 $\Delta M = 178~MeV/c^2$ in HMR $(M_{\mu\mu} > 4~GeV/c)$

Contamination:

Upstream cell — 0.29 % Downstream cell — 1.16 %

⇒ A very low level of contamination.

Acceptances, event rates and statistical errors

The dimuons acceptance in the HMR $(M_{\mu\mu}>4~GeV/c)$ is 39%.

The accepted dimuons are:

$$\bullet$$
 μ_1 (1st spectrometer) & μ_2 (1st spectrometer) - 22%

$$\bullet$$
 μ_1 (2nd spectrometer) & μ_2 (2nd spectrometer) - 2%

$$\bullet$$
 μ_1 (1st spectrometer) & μ_2 (2nd spectrometer) - 18%

We expect an DY event rate of 900 events/day in the HMR assuming:

$$\bullet$$
 π^- beam with 190 GeV/c

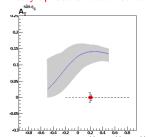
•
$$I_{beam} = 6 \times 10^7 \ particles/s$$

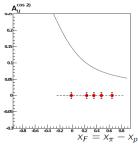
•
$$L = 1.2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

Assuming two years of data taking we expect the following statistical errors in azimuthal asymmetries:

Asymmetry	Uncertainty in HMR (%)
$\delta A_U^{\cos 2\phi}$	0.43
$\delta A_T^{\sin \phi_S}$	1.34
$\delta A_T^{\sin(2\phi+\phi_S)}$	2.70
$\delta A_T^{\sin(2\phi-\phi_S)}$	2.70

Azimuthal asymmetries and statistical errors (2010 status)

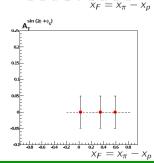


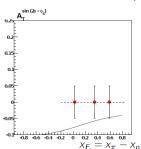

Theory update is needed to take into account the Q^2 evolution.

Sivers

M. Anselmino *et al*, Phys. Rev. D 79 (2009) 054010

Boer-Mulders


 \otimes


Boer-Mulders

B. Zhang *et al*, Phys. Rev. D 77 (2008)

054011

Boer-Mulders

Transversity

A. N. Sissakian et al, Phys. Part. Nucl. 41:

64-100, 2010

Summary

- The opportunity to study, in the same experiment, the TMD PDFs from both SIDIS and the DY processes is unique.
- The sign change in Sivers and Boer-Mulders functions when accessed by DY and SIDIS will be checked.
- The feasibility of the measurement was proven after three past beam tests.
- The COMPASS II Proposal was approved by CERN for a first period of 3 years including 1 year for Drell-Yan.
- Drell-Yan data taking will start in 2014 and the second year of data taking is expected in 2017.