### Latest QCD results from PH\*ENIX

Aneta Iordanova





### Probing the medium with high-p<sub>⊤</sub> particles

- The overall goal is to investigate the properties of the hot, dense matter produced in heavy ion collisions
- As hard partonic scattering occurs as the medium is forming, the probes may be modified by medium
- We wish to quantify that modification.



Both jets are subject to interaction with the medium



### Our tools

- PHENIX controlled
  - Centrality (system size)
  - Momentum
  - Particle Identification
- Today:
  - Single spectra
  - Triggered Correlations
  - $\gamma$  (and "Full") jet reconstruction

- RHIC controlled
   Can turn on and off the hot, dense medium
  - Collision Species
  - Collision Energy

3



### A brief story of high- $p_T$ at RHIC: Single particle spectra

- Earliest measurements at high-p₁:
  - Large "suppression" observed at high-p<sub>↑</sub>
  - Interpreted as energy loss in medium - jet quenching
- Difficult to be quantitative:
  - In the level of radiative versus collisional energy loss
  - Is jet quenching a perturbative or non-perturbative process





### A brief story of high- $p_T$ at RHIC: Two-particle correlations

- More direct evidence of jet quenching:
  - "disappearance" of backward jet
    - Interpreted as suppression due to parton energy loss
  - "reappearance" at low momenta
    - shape modification on the away side
  - "no quenching" at highest  $p_{T}$
- Still uncertainties
  - in the energy scale of the jet
  - modifications to the fragmentation functions (expected softening and broadening of the jet)
  - geometrical aspects
    - position of hard scattering in the collision overlap area
    - the path length traversed in medium
    - energy loss by the trigger or near side jet?





### A brief story of high- $p_T$ at RHIC: Full-jet and $\gamma$ -jet

### $\circ$ $\gamma$ -jet: the golden channel for Heavy-ion collisions

- No trigger/surface bias opposite side (jet) yield averaged over all path lengths
- Clean probe: can calibrate energy of the jet
- Direct measure of the fragmentation function of the jet
- Any modification of the FF interpreted as parton energy loss in the medium

### Full-jet: a relatively recent probe at RHIC

- Direct observation of parton-medium interaction and medium response
- R<sub>A</sub><sup>jet</sup> → parton medium induced energy loss
- Di-jet correlations → jet broadening



### Testing the jet-quenching hypothesis: d+Au at RHIC



#### d+Au versus Au+Au

- Control experiment
- "cold" versus "hot" nuclear matter

#### Result:

- Suppression in Au+Au central events not apparent in d+Au collisions
- Suppression in Au+Au is a "final state" effect



### Road map for further detailed studies

- Know:
  - Spectral suppression in Au+Au
  - No suppression in d+Au
  - Away-side jet also modified
    - Dependent on trigger-p<sub>T</sub>
       and/or associate p<sub>T</sub>

- On't know:
  - How, why
    - Radiative, collisional energy loss?
  - Systematic dependencies?
    - Path length
    - Color-charge
    - Collision energy
    - System-size
  - Are our measurement methods biased?
    - Can we remove the bias with new methods?



### PHENIX detector Brief Overview

- Two mid-rapidity spectrometer arms:  $|\eta|$ <0.35 and  $\Delta \phi = \pi/2$
- Main detectors used
  - Drift Chamber (DC), Pad Chamber (1&3), Cherenkov Detector(RICH)
    - Momentum measurement for charge particles, electron Id
  - EMCal (Pb-glass & Pb-scintillator)
    - Energy for photons  $(\pi^0, \eta)$
  - TOF
    - PID at large momentum
  - VTX, FVTX
    - Upgrades for heavy flavor



Run 12 central arm configuration



# Systematic Studies: single spectra

- Path-length dependencies
- Simplest:suppression is dependent on the number of participants, N<sub>part</sub>
- Similar dependence observed for π<sup>0</sup> and h<sup>±</sup> at high-p<sub>τ</sub>





# Systematic Studies: single spectra

Path-length dependencies

#### More precision:

- Currently observed
  - Average suppression
  - Integrated over the whole medium
- Separate in-plane versus out-of-plane
  - Controlled probe of energy loss due to medium







# Systematic Studies single spectra

- Path-length dependencies
- In- versus out-of-plane dependence observed in central





# Systematic Studies: single spectra

- Path-length dependencies
- In- versus out-of-plane dependence observed in central and mid-central





# Systematic Studies: single spectra

Phys. Rev. C80, 054907 (2009)

- Path-length dependencies
- In- versus out-of-plane dependence observed in central and mid-central
- Suppression strongly correlated to the path length, not just system size (Npart)
  - Becomes more sharply defined with more sophisticated "path length"





# Systematic Studies: direct-γ spectra

#### • Question:

Is this really a suppression?

#### Solution:

 Measure direct-γ, which do not couple to the medium

#### Answer:

 Direct photons are not suppressed – scale with N<sub>∞</sub> (circa 2005)





# Systematic Studies: direct-γ spectra

#### • Question:

Is this really a suppression?

#### Solution:

 Measure direct-γ, which do not couple to the medium

#### • Answer:

 Direct photons are not suppressed – scale with N<sub>∞</sub> (circa 2005)





# Systematic Studies: direct-γ spectra

- Question:
  - Is this really a suppression?
- Answer:
  - Direct photons are not suppressed – scale with N<sub>∞</sub> (circa 2005)
- Updated (circa 2011):
  - Direct photons do not scale with N<sub>∞I</sub> at very high-p<sub>T</sub>





## Systematic Studies: energy scan

#### "High" energy scan

- Probe energy dependence of R<sub>AA</sub>
  - $\sqrt{s_{NN}}$ =200, 62.4 and 39 GeV
    - "suppression" observed
  - √s<sub>NN</sub>=39 GeV
    - "enhancement" peripheral

#### ("Low" energy scan

- $\circ$   $\sqrt{s_{NN}}$ <20 GeV
- Focus on studying the QCD phase diagram
- outside the scope of this talk.)





## Systematic Studies: energy scan

"High" energy scan

- Probe energy dependence of R<sub>AA</sub>
  - $\sqrt{s_{NN}}$ =200, 62.4 and 39 GeV
    - "suppression" observed
- Path length dependence observed, and similar for energies > 39 GeV





# Systematic Studies: energy scan

#### Ultimate energy scan:

- Comparison to LHC
  - Same old same old
  - nothing changes? Why?





# Systematic Studies: species scan

- We have seen d+Au
  - What about other smaller systems?
- Same old same old
  - $\mathsf{R}_{\scriptscriptstyle\mathsf{A}\!\mathsf{A}}$  for  $\pi^{\scriptscriptstyle\mathsf{0}}$  scale with  $\mathsf{N}_{\scriptscriptstyle\mathsf{part}}$
  - Approximate path length dependence holds





### Triggered correlations

- Advantage:
  - Jet like
  - Can tune trigger and associates to probe different kinematic regions
- Disadvantage
  - Need large statistics
  - Need wide coverage
- Advantage AND Disadvantage
  - Surface bias





# Surface bias single spectra versus h-h correlations



- No trigger / no surface bias
  - Probe full medium
  - Path length is not fixed

- Triggered / have surface bias
  - Owing to preferred interactions from edge of medium
  - Associate path length "fixed"





- High- $p_{T}$  high- $p_{T}$  correlation
  - Away-side suppression relative to p+p collisions





- High- $p_{\scriptscriptstyle T}$  low- $p_{\scriptscriptstyle T}$  correlation
  - Away-side shape modification relative to p+p collisions



- Form a nuclear modification factor, like R<sub>M</sub> (now a conditional R<sub>M</sub> → I<sub>M</sub>)
  - Associates:
    - Clear path length dependence
    - p<sub>⊤</sub> dependent
  - Trigger:
    - No dependence surface bias?
- How does this compare to  $R_{M}$ ?









• We should try something else ...



### $\gamma$ -jet reconstruction

- γ-jet
  - No  $\gamma$ -medium interaction
- Two advantages:
  - No trigger surface bias
  - Energy calibration of associatejet
- With no surface bias:
  - Expect a smaller modification to away-side
    - Smaller average path length as triggers may come from any point in the medium



**Hadron-triggered correlations:** 

Both jet subject to interaction with the medium Surface bias probable (trigger jet must emerge) Associated path length "fixed"



**Photon-triggered correlations:** 

Only hadronic jet subject to interaction with the medium No surface bias

Associated path length not fixed



### $\gamma$ -jet reconstruction

- γ-jet
  - No  $\gamma$ -medium interaction
- Two advantages:
  - No trigger surface bias
  - Energy calibration of associatejet
- With no surface bias:
  - Expect a smaller modification to away-side
    - Smaller average path length as triggers may come from any point in the medium



**Hadron-triggered correlations:** 

Both jet subject to interaction with the medium Surface bias probable (trigger jet must emerge) Associated path length "fixed"



**Photon-triggered correlations:** 

Only hadronic jet subject to interaction with the medium No surface bias

Associated path length not fixed



### Hadronic jet FF in Au+Au



Calibrated probe

$$p_T^{\gamma} \approx p_T^{jet}$$

- $D_{AA}(z_T)$  and  $I_{AA}$  extracted from the "head" region on the away side of the  $\gamma$ +hadron correlation
- z<sub>⊤</sub> scaling in Au+Au
- FF modification in AuAu



• X-axis  $z_T = \frac{p_T^h}{p_T^{\gamma}}$ 





### Medium modification of hadronic jet

- Centrality dependence of  $\gamma$ -hadron  $I_{AA}$ 
  - Consistent with  $\pi^0$ -hadron  $I_{AA}$
  - Consistent with  $R_{AA}(\pi^0)$
- Same level of suppression
  - Not expected
  - Is there surface bias?
  - Is there a path-length effect?
  - Is there suppression at all?





### Full jet reconstruction



$$R_{AA} = \frac{(1/N_{evt}) \times (d^2 N_{Cu}/dp_T dy)}{\langle T_{AB} \rangle \times d^2 \sigma_{pp}/dp_T dy}$$

- Measure the total energy loss of the parton
  - No ambiguity from the FF modification or
  - Energy scale of the jet
- Jet R<sub>AA</sub> versus p<sub>T</sub>
  - Energy scale is of the reconstructed pp jet
- Modification is observed in central collisions
  - Gradually increasing with centrality
  - Appear unmodified in peripheral



### Jet modification



- Strong jet modification is observed for central Cu
- Same level as single-π<sup>0</sup> spectra for overlapping p<sub>τ</sub> range
  - Within energy scale and point systematics
  - Note: R<sub>M</sub> single-π<sup>0</sup> spectra at a different energy scale than reconstructed jets
    - $\pi^0$  are relatively squashed down
    - (a 10 GeV  $\pi^0$  came from a >10 GeV jet)



### Does the jet broaden in the medium?

- Dijet studies
  - No centrality difference
  - Surviving parton traversing medium has very small transverse k<sub>T</sub> broadening?
  - Jets are not deflected more in central than in peripheral





### Summary

- PHENIX has made a wide range of high-p<sub>⊤</sub> measurements
  - Single Spectra
  - Triggered Correlations
  - Direct photons
  - Full jet reconstruction
- Have observed a clear path length dependence to the modification of the spectra relative to pp interactions
- Path length dependencies are surprisingly similar for
  - Single and triggered distributions
  - Hadron and photon triggered correlations
  - Reconstructed jets
- Needs more systematic studies to complete the parton energy loss picture

## Backup



## Full jet reconstruction

#### Gaussian filter

- Cone-like algorithm
  - without sharp angular cut-of
- Gaussian distributed weights, kernel size  $\sigma$ 
  - Enhances the center signal to the periphery
     → optimizes signal-to-background

$$\iint_{\mathbb{R}\times S^1} d\eta' d\phi' p_T(\eta',\phi') \exp\left[-\frac{(\eta-\eta')^2+(\phi-\phi')^2}{2\sigma^2}\right]$$

#### Background:

- Fake jet rejection scheme
  - No statistical subtraction
  - Trade-off between reconstruction efficiency and acceptable rejection rate



Lego: final state particle pt Top contour: filter output Red lines: reconstructed jets



#### Jets in d+Au at 200 GeV





- Jet R<sub>cp</sub> versus p<sub>T</sub>
  - Energy scale is of the reconstructed pp jet
- Suppression is observed in central collisions
  - Gradually increasing with centrality
  - Appear unmodified in peripheral
  - Consistent with single particle pi0
  - Cold nuclear matter energy loss?



#### Jets in d+Au





- Jet R<sub>cp</sub> versus p<sub>T</sub>
  - Energy scale is of the reconstructed pp jet
- Suppression is observed in central collisions
  - Gradually increasing with centrality
  - Appear unmodified in peripheral
  - Consistentbetween cone size



### Di-jets in d+Au



 Multiple scattering in cold nuclear matter



## (Direct) Fake jet rejection

 Inspired by the Gaussian filter algorithm: cut on the shape of the jet

$$g_{\sigma_{\mathsf{dis}}}(\eta, \varphi) = \sum_{i \in \mathsf{fragment}} p_{T,i}^2 \exp \left[ -\frac{(\eta_i - \eta)^2 + (\varphi_i - \varphi)^2}{2\sigma_{\mathsf{dis}}^2} \right]$$

#### Discriminant:

- Weighted  $p_1^2$  sum with a Gaussian distribution
  - $\eta, \phi$  is the reconstructed jet axis
- Size of Gaussian kernel  $\sigma_{dis} = 0.1$ 
  - characteristic background particle separation  $[dR_{hark} = \sqrt{(2\pi/(dN/d\eta))}]$
- Allow jet axis to shift until g<sub>ridis</sub> is maximized (g')
- Cut on g'<sub>0.1</sub>>17.8 (GeV/c)<sup>2</sup>
  - Fixed discriminant threshold → nearly centrality independent efficiency





### Jet energy correction

- Correction to true jet energy scale
  - Difficult via multiplicative factor
  - Unfolding of the measured spectrum by using an energy transfer matrix
    - Regularized inversion of the reconstructed to the "true" spectra using singular value decomposition (SVD), GURU\*



**Reconstructed/true** jet transfer matrix for pp at 200 GeV.

Gaussian filter with  $\sigma$ =0.3

GEANT Pythia 6.4.20 simulation.

<sup>\*</sup> Nucl. Instrum. Meth. A372, 469 (1996)



### Jet reconstruction efficiency 200 GeV Cu+Cu collisions

#### Jet reconstruction efficiency

- pp jets embedded into Cu+Cu data
- Includes fake rejection
  - g'<sub>0.1</sub>>17.8 (GeV/c)
  - Jets with p<sub>↑</sub>>16 GeV/c are above the discriminant threshold for fake jets
    - Little effect on R<sub>A</sub>, spectra above this p<sub>T</sub>
- Nearly centrality independent



Jet reconstruction efficiency for g'0.1>17.8 (GeV/c)<sup>2</sup>.

Embedding of pp into Cu+Cu data. Efficiency includes the fake rejection.



## Fragmentation functions

- $\circ$  z =  $p_{particle||} / p_{jet}$ 
  - $p_{jet}$  must be the true jet energy to perform "apple-to-apple" division, otherwise z is shifted
- 2D unfolding needed to simultaneously unfold  $(p_{particle||}, p_{jet})$ 
  - Phenix developed a n-D generalization to GURU
  - First time 2D regularized SVD unfolding is applied in HEP/NP
- Result for Run-5 p + p minimum bias only
- Direct comparison to (perfect detector) PYTHIA at  $p^{jet}_{T}$  =15 GeV/c
- Particle species:
  - Non-ID charged tracks (rejecting  $e^{-}$ , mostly from  $\gamma$  beam-pipe conversions)
  - Neutral clusters (electromagnetic)
- Single particle resolution not yet unfolded (very small effect)
  - $\delta p/p = 0.7\% \oplus 1.0\% p/(GeV/c)$
- Uncertainty in the absolute energy scale of the calorimeter clusters
  - ± 3%(syst)



## Systematic Studies: species, energy scan

"High" energy scan

- Probe energy dependence of R<sub>M</sub>
  - $\sqrt{s_{NN}}$ =200 and 62.4 GeV
    - "suppression" observed
  - √s<sub>NN</sub>=22.4 GeV
    - "enhancement"





# Systematic Studies: energy scan

"High" energy scan

- Probe energy dependence of R<sub>A</sub>
  - $\sqrt{s_{NN}}$ =200 and 62.4 GeV
    - "suppression" observed
  - √s<sub>NN</sub>=22.4 GeV
    - "enhancement"
- Path length dependence observed, and similar, at higher energies





## Systematic Studies: identified single spectra

- Further examination
  - Color-charge dependence
  - Via Particle-ID
- Strong species dependence of R<sub>AA</sub>
  - Proton modification distinct from meson





#### FF modified in Au+Au?

Fit function: 
$$\frac{d N}{d z_T} = N e^{-b z_T}$$

- z<sub>⊤</sub> scaling in Au+Au
- Universal fit for all jet energies to compare with pp
- Slopes difference
  - p+p, b=6.9±0.8quark fragmentation b=8,gluon fragmentation b=11
  - Au+Au, b=9.5±1.4
- Au+Au slope is 1.3σ larger than pp

