Latest QCD results from PHENIX

Aneta Iordanova

UC Riverside

Excited QCD 2012, May 6-12
Probing the medium with high-p_T particles

- The overall goal is to investigate the properties of the hot, dense matter produced in heavy ion collisions.
- As hard partonic scattering occurs as the medium is forming, the probes may be modified by medium.
- We wish to quantify that modification.

Both jets are subject to interaction with the medium.
Our tools

- PHENIX controlled
 - Centrality (system size)
 - Momentum
 - Particle Identification

- RHIC controlled
 - Can turn on and off the hot, dense medium
 - Collision Species
 - Collision Energy

- Today:
 - Single spectra
 - Triggered Correlations
 - γ (and “Full”) jet reconstruction
A brief story of high-p_T at RHIC:
Single particle spectra

- Earliest measurements at high-p_T:
 - Large “suppression” observed at high-p_T
 - Interpreted as energy loss in medium - jet quenching

- Difficult to be quantitative:
 - In the level of radiative versus collisional energy loss
 - Is jet quenching a perturbative or non-perturbative process
A brief story of high-p_T at RHIC:
Two-particle correlations

- More direct evidence of jet quenching:
 - “disappearance” of backward jet
 - Interpreted as suppression due to parton energy loss
 - “reappearance” at low momenta
 - Shape modification on the away side
 - “no quenching” at highest p_T

- Still uncertainties
 - in the energy scale of the jet
 - Modifications to the fragmentation functions (expected softening and broadening of the jet)
 - Geometrical aspects
 - Position of hard scattering in the collision overlap area
 - The path length traversed in medium
 - Energy loss by the trigger or near side jet?
A brief story of high-p_T at RHIC: Full-jet and γ-jet

- γ-jet: the golden channel for Heavy-ion collisions
 - No trigger/surface bias – opposite side (jet) yield averaged over all path lengths
 - Clean probe: can calibrate energy of the jet
 - Direct measure of the fragmentation function of the jet
 - Any modification of the FF interpreted as parton energy loss in the medium

- Full-jet: a relatively recent probe at RHIC
 - Direct observation of parton-medium interaction and medium response
 - R_{AA}^{jet} → parton medium induced energy loss
 - Di-jet correlations → jet broadening
Testing the jet-quenching hypothesis: d+Au at RHIC

- d+Au versus Au+Au
 - Control experiment
 - “cold” versus “hot” nuclear matter
- Result:
 - Suppression in Au+Au central events not apparent in d+Au collisions
 - Suppression in Au+Au is a “final state” effect
Road map for further detailed studies

Know:
- Spectral suppression in Au+Au
- No suppression in d+Au
- Away-side jet also modified
 - Dependent on trigger-p_T
 - and/or associate p_T

Don’t know:
- How, why
 - Radiative, collisional energy loss?
- Systematic dependencies?
 - Path length
 - Color-charge
 - Collision energy
 - System-size
- Are our measurement methods biased?
 - Can we remove the bias with new methods?
PHENIX detector
Brief Overview

- Two mid-rapidity spectrometer arms: $|\eta|<0.35$ and $\Delta\phi=\pi/2$

- Main detectors used
 - Drift Chamber (DC), Pad Chamber (1&3), Cherenkov Detector(RICH)
 - Momentum measurement for charge particles, electron Id
 - EMCal (Pb-glass & Pb-scintillator)
 - Energy for photons (π^0, η)
 - TOF
 - PID at large momentum
 - VTX, FVTX
 - Upgrades for heavy flavor

Run 12 central arm configuration
Systematic Studies:
single spectra

- Path-length dependencies

- Simplest: suppression is dependent on the number of participants, N_{part}

- Similar dependence observed for π^0 and h^\pm at high-p_T

Phys. Rev. C69, 034910 (2004)
Systematic Studies: single spectra

- Path-length dependencies

More precision:
- Currently observed
 - Average suppression
 - Integrated over the whole medium
- Separate in-plane versus out-of-plane
 - Controlled probe of energy loss due to medium
Systematic Studies
single spectra

- Path-length dependencies
- In- versus out-of-plane dependence observed in central

\[\text{Phys. Rev. C80, 054907 (2009)} \]
Systematic Studies: single spectra

- Path-length dependencies
- In- versus out-of-plane dependence observed in central and mid-central
Systematic Studies: single spectra

- Path-length dependencies
- In- versus out-of-plane dependence observed in central and mid-central
- Suppression strongly correlated to the path length, not just system size (N_{part})
 - Becomes more sharply defined with more sophisticated “path length”
Systematic Studies: direct-γ spectra

Question:
- Is this really a suppression?

Solution:
- Measure direct-γ, which do not couple to the medium

Answer:
- Direct photons are not suppressed – scale with N_{coll} (circa 2005)
Question:
- Is this really a suppression?

Solution:
- Measure direct-γ, which do not couple to the medium

Answer:
- Direct photons are not suppressed – scale with N_{col} (circa 2005)
Systematic Studies: direct-γ spectra

- Question:
 - Is this really a suppression?

- Answer:
 - Direct photons are not suppressed – scale with N_{coll} (circa 2005)

- Updated (circa 2011):
 - Direct photons do not scale with N_{coll} at very high-p_T
Systematic Studies: energy scan

“High” energy scan
- Probe energy dependence of R_{AA}
 - $\sqrt{s_{NN}} = 200$, 62.4 and 39 GeV
 - “suppression” observed
 - $\sqrt{s_{NN}} = 39$ GeV
 - “enhancement” peripheral

(“Low” energy scan
- $\sqrt{s_{NN}} < 20$ GeV
- Focus on studying the QCD phase diagram
- outside the scope of this talk.)
Systematic Studies: energy scan

“High” energy scan
- Probe energy dependence of R_{AA}
 - $\sqrt{s_{NN}} = 200, 62.4$ and 39 GeV
 - “suppression” observed

- Path length dependence observed, and similar for energies > 39 GeV
Ultimate energy scan:

- Comparison to LHC
 - Same old same old
 - nothing changes? Why?
Systematic Studies: species scan

- We have seen d+Au
 - What about other smaller systems?

- Same old same old
 - R_{AA} for π^0 scale with N_{part}
 - Approximate path length dependence holds

![Graph showing R_{AA} for $p_T > 7.0 \text{ GeV/c}$ with N_{part} on the x-axis and R_{AA} on the y-axis. The graph includes data points for integrated R_{AuAu} and R_{CuCu} at 200 GeV.]
Triggered correlations

- **Advantage:**
 - Jet like
 - Can tune trigger and associates to probe different kinematic regions

- **Disadvantage**
 - Need large statistics
 - Need wide coverage

- **Advantage** **AND**
 - Disadvantage
 - Surface bias
Surface bias single spectra versus h-h correlations

- No trigger / no surface bias
 - Probe full medium
 - Path length is not fixed

- Triggered / have surface bias
 - Owing to preferred interactions from edge of medium
 - Associate path length “fixed”
Systematic Studies: triggered correlations

- High-\(p_T \) – high-\(p_T \) correlation
 - Away-side suppression relative to \(p+p \) collisions
Systematic Studies: triggered correlations

- High-p_T – low-p_T correlation
 - Away-side shape modification relative to $p+p$ collisions
Systematic Studies: triggered correlations

- Form a nuclear modification factor, like R_{AA} (now a conditional $R_{AA} \rightarrow I_{AA}$)
 - Associates:
 - Clear path length dependence
 - p_T dependent
 - Trigger:
 - No dependence – surface bias?

- How does this compare to R_{AA}?
How does this compare to R_{AA}?
- Same (?)
- But we are sampling more medium with the conditional I_{AA}?
We should try something else ...
γ-jet reconstruction

- **γ-jet**
 - No γ-medium interaction

- **Two advantages:**
 - No trigger surface bias
 - Energy calibration of associate-jet

- **With no surface bias:**
 - Expect a *smaller* modification to away-side
 - Smaller average path length as triggers may come from any point in the medium

Hadron-triggered correlations:
- Both jet subject to interaction with the medium
- Surface bias probable (trigger jet must emerge)
- Associated path length “fixed”

Photon-triggered correlations:
- Only hadronic jet subject to interaction with the medium
- No surface bias
- Associated path length not fixed
γ-jet reconstruction

- γ-jet
 - No γ-medium interaction

- Two advantages:
 - No trigger surface bias
 - Energy calibration of associate-jet

- With no surface bias:
 - Expect a **smaller** modification to away-side
 - Smaller average path length as triggers may come from any point in the medium

Hadron-triggered correlations:
- Both jet subject to interaction with the medium
- Surface bias probable (trigger jet must emerge)
- Associated path length “fixed”

Photon-triggered correlations:
- Only hadronic jet subject to interaction with the medium
- No surface bias
- Associated path length not fixed
Hadronic jet FF in Au+Au

- Calibrated probe
 \[p_T^\gamma \approx p_T^{\text{jet}} \]

- \(D_{AA}(z_T) \) and \(I_{AA} \) extracted from the “head” region on the away side of the \(\gamma+\text{hadron} \) correlation

- \(z_T \) scaling in Au+Au

- FF modification in AuAu

- \(Y \)-axis
 \[D_q(z_T) = \frac{1}{N_{\text{ev}1}} \frac{dN}{dz_T} \]

- \(X \)-axis
 \[z_T = \frac{p_T^h}{p_T^\gamma} \]

A. Adare et al (PHENIX) PRC 80, 024908 (2009)
Medium modification of hadronic jet

- Centrality dependence of γ-hadron I_{AA}
 - Consistent with π^0-hadron I_{AA}
 - Consistent with $R_{AA}(\pi^0)$

- Same level of suppression
 - Not expected
 - Is there surface bias?
 - Is there a path-length effect?
 - Is there suppression at all?
Full jet reconstruction

- Measure the total energy loss of the parton
 - No ambiguity from the FF modification or
 - Energy scale of the jet

- Jet R_{AA} versus p_T
 - Energy scale is of the reconstructed pp jet

- Modification is observed in central collisions
 - Gradually increasing with centrality
 - Appear unmodified in peripheral

$$R_{AA} = \frac{1/N_{evt}}{\langle T_{AB} \rangle} \times \frac{d^2 N_{Cu}/dp_T dy}{d^2 \sigma_{pp}/dp_T dy}$$
Jet modification

- Strong jet modification is observed for central Cu
- **Same level** as single-π^0 spectra for overlapping p_T range
 - Within energy scale and point systematics
 - Note: R_{AA} single-π^0 spectra at a different energy scale than reconstructed jets
 - π^0 are relatively squashed down
 - (a 10 GeV π^0 came from a >10 GeV jet)
Does the jet broaden in the medium?

- Dijet studies
 - No centrality difference
 - Surviving parton traversing medium has very small transverse k_T broadening?
 - Jets are not deflected more in central than in peripheral
Summary

- PHENIX has made a wide range of high-p_T measurements
 - Single Spectra
 - Triggered Correlations
 - Direct photons
 - Full jet reconstruction
- Have observed a clear path length dependence to the modification of the spectra relative to pp interactions
- Path length dependencies are surprisingly similar for
 - Single and triggered distributions
 - Hadron and photon triggered correlations
 - Reconstructed jets
- Needs more systematic studies to complete the parton energy loss picture
Backup
Full jet reconstruction

- Gaussian filter
 - Cone-like algorithm
 - without sharp angular cut-off
 - Gaussian distributed weights, kernel size σ
 - Enhances the center signal to the periphery \rightarrow optimizes signal-to-background

$$\int_{\mathbb{R} \times S^1} d\eta' d\phi' p_T(\eta', \phi') \exp \left[-\frac{(\eta - \eta')^2 + (\phi - \phi')^2}{2\sigma^2} \right]$$

- Background:
 - Fake jet rejection scheme
 - No statistical subtraction
 - Trade-off between reconstruction efficiency and acceptable rejection rate

Lego: final state particle p_T
Top contour: filter output
Red lines: reconstructed jets

Run-5 Cu + Cu at $\sqrt{s_{NN}} = 200$ GeV
19-20% cent., 24.3, 10.3 GeV/c dijet
Jets in d+Au at 200 GeV

- Jet R_{cp} versus p_T
 - Energy scale is of the reconstructed pp jet

- Suppression is observed in central collisions
 - Gradually increasing with centrality
 - Appear unmodified in peripheral
 - Consistent with single particle π^0
 - Cold nuclear matter energy loss?
Jets in d+Au

- Jet R_{cp} versus p_T
 - Energy scale is of the reconstructed pp jet

- Suppression is observed in central collisions
 - Gradually increasing with centrality
 - Appear unmodified in peripheral
 - Consistent between cone size
Di-jets in d+Au

- Multiple scattering in cold nuclear matter
(Direct) Fake jet rejection

- Inspired by the Gaussian filter algorithm: cut on the shape of the jet

\[g_{\text{dis}}(\eta, \phi) = \sum_{i \in \text{fragment}} p_{T,i}^2 \exp \left[-\frac{(\eta_i - \eta)^2 + (\phi_i - \phi)^2}{2\sigma_{\text{dis}}^2} \right] \]

Discriminant:
- Weighted p_T^2 sum with a Gaussian distribution
 - η, ϕ is the reconstructed jet axis
- Size of Gaussian kernel $\sigma_{\text{dis}} = 0.1$
 - \sim characteristic background particle separation
 \[[dR_{\text{back}} = \sqrt{2\pi/(dN/d\eta)}] \]
- Allow jet axis to shift until g_{dis} is maximized (g')
- Cut on $g'_{0.1} > 17.8$ (GeV/c)2
 - Fixed discriminant threshold \rightarrow nearly centrality independent efficiency

"Real" jet passes cut

"Background fluctuation" fails cut
Jet energy correction

- Correction to true jet energy scale
 - Difficult via multiplicative factor
 - Unfolding of the measured spectrum by using an energy transfer matrix
 - Regularized inversion of the reconstructed to the “true” spectra using singular value decomposition (SVD), GURU*

Reconstructed/true jet transfer matrix for pp at 200 GeV.
Gaussian filter with $\sigma=0.3$
GEANT Pythia 6.4.20 simulation.
Jet reconstruction efficiency

200 GeV Cu+Cu collisions

Jet reconstruction efficiency
- *pp* jets embedded into Cu+Cu data
- Includes fake rejection
 - $g'_{0.1}>17.8$ (GeV/c)
 - Jets with $p_T>16$ GeV/c are above the discriminant threshold for fake jets
 - Little effect on R_{AA}, spectra above this p_T
- Nearly centrality independent

Embedding of pp into Cu+Cu data. Efficiency includes the fake rejection.
Fragmentation functions

- \(z = \frac{p_{\text{particle}}}{p_{\text{jet}}} \)
 - \(p_{\text{jet}} \) must be the true jet energy to perform “apple-to-apple” division, otherwise \(z \) is shifted

- 2D unfolding needed to simultaneously unfold \((p_{\text{particle}}, p_{\text{jet}})\)
 - Phenix developed a n-D generalization to GURU
 - First time 2D regularized SVD unfolding is applied in HEP/NP

- Result for Run-5 \(p + p \) minimum bias only
- Direct comparison to (perfect detector) PYTHIA at \(p_{\text{jet}} = 15 \text{ GeV/c} \)
- Particle species:
 - Non-ID charged tracks (rejecting e\(^-\), mostly from \(\gamma \) beam-pipe conversions)
 - Neutral clusters (electromagnetic)
- Single particle resolution not yet unfolded (very small effect)
 - \(\delta p/p = 0.7\% \oplus 1.0\% p/(\text{GeV/c}) \)
- Uncertainty in the absolute energy scale of the calorimeter clusters
 - \(\pm 3\% \text{(syst)} \)
Systematic Studies: species, energy scan

“High” energy scan

- Probe energy dependence of R_{AA}
 - $\sqrt{s_{NN}}$ = 200 and 62.4 GeV
 - “suppression” observed
 - $\sqrt{s_{NN}}$ = 22.4 GeV
 - “enhancement”

![Graph showing R_{AA} vs. p_T](image_url)
"High" energy scan

- Probe energy dependence of R_{AA}
 - $\sqrt{s_{NN}}=200$ and 62.4 GeV
 - "suppression" observed
 - $\sqrt{s_{NN}}=22.4$ GeV
 - "enhancement"

- Path length dependence observed, and similar, at higher energies
Systematic Studies: identified single spectra

- Further examination
 - Color-charge dependence
 - Via Particle-ID

- Strong species dependence of R_{AA}
 - Proton modification distinct from meson
FF modified in Au+Au?

- z_T scaling in Au+Au
- Universal fit for all jet energies to compare with pp
- Slopes difference
 - $p+p$, $b=6.9\pm0.8$
 - Quark fragmentation $b=8$, gluon fragmentation $b=11$
 - Au+Au, $b=9.5\pm1.4$
- Au+Au slope is 1.3σ larger than pp

Fit function: \[
\frac{dN}{dz_T} = N e^{-b z_T}
\]